Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/158185
Title: A buffer based low dropout regulator with fast transient response
Authors: Muhammad Irwandy Kamarudin
Keywords: Engineering::Electrical and electronic engineering::Electronic circuits
Engineering::Electrical and electronic engineering::Integrated circuits
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Muhammad Irwandy Kamarudin (2022). A buffer based low dropout regulator with fast transient response. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/158185
Abstract: Low-dropout (LDO) voltage regulators are a widely-used device capable of regulating a stable supply voltage for electronic components in a system. Some components, particularly digital ones, are capable of pulling large amounts of current over a very short time. Hence, an LDO regulator with fast settling time and small spike voltage under load transients is required to ensure stable operation of the system. The proposed LDO regulator, which is designed and simulated in Cadence Virtuoso using a 40nm CMOS process, operates at 1.1 V supply voltage and 0.9 V output. The proposed regulator employs a level-shifted flipped voltage follower structure with multiple AC- coupled feedback loops to provide fast transient response under the step load current. It employs an improved frequency compensation scheme. The simulation results have shown that the output voltage overshoot and undershoot are 19.63 mV and 15.83 mV, respectively for a step load current of 0 mA to 50 mA with 200 ns edge time and 100 pF load capacitance. A 1% settling time of 568 ns was achieved. With the proposed frequency compensation scheme, the regulator is capable of supporting load current between 0 mA and 50 mA while consuming only 22.68 µA quiescent current. This achieves lower quiescent current when compared to those of the representative prior- art works. More importantly, the performance of the regulator exhibits good transient FOMs, which are comparable to that of previously-reported works. Finally, several possible areas of improvement, pertaining to the improvement of the open- loop DC gain and stability margins of the LDO regulator, are recommended.
URI: https://hdl.handle.net/10356/158185
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
MuhdIrwandy_BEng.pdf
  Restricted Access
2.58 MBAdobe PDFView/Open

Page view(s)

41
Updated on Dec 1, 2022

Download(s)

11
Updated on Dec 1, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.