Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/15820
Title: Study of printed electronics
Authors: Low, Kim Huat.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electronic circuits
Issue Date: 2009
Abstract: Printed electronics are a relatively new technology that has attracted key interests in recent years and has a huge potential market that could hit $300 billion dollars. This technique enables the cutting down of manufacturing cost of semiconductor and better utilization of raw material such as silicon reduces space. There has been extensive research in materials that could be used for printed electronics and improvement in the technique to yield better quality electronic devices. In this project, the micro inkjet printing technique is explored. Micro inkjet printing and sol gel technique are used to fabricate SiO2 film and ZnO film. The results using the two techniques compared and studied. Besides, observations of the printing technique are also made such as the process of the technique and its limitations. Parameters such as film thickness, current voltage characteristics, and capacitance voltage characteristics are measured by various equipment. The results are analyzed and key relationship trends from the results are deduced. From the printing technique, one could deduce that the film thickness and film width are inversely proportional to the pitch size of the droplet. Also, printing exhibits more consistent controlling of film thickness compared to sol gel technique. The differences in the current voltage characteristics results are mainly due to the difference in film thickness rather than the technique used. Lastly, capacitance voltage characteristics show that printing technique produce better quality film and allow more accurate measurement of the dielectric constant. Also, printed ZnO film has shown interesting property in which breakdown voltage only occurs at the negative potential. The project still has many unexplored boundaries. Surface porosity and uniformity could be investigated. Current voltage characteristics could be studied on device with similar film thickness instead. Also, ZnO film could be further examined.
URI: http://hdl.handle.net/10356/15820
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
E6092081.pdf
  Restricted Access
3.63 MBAdobe PDFView/Open

Page view(s)

210
Updated on Dec 5, 2020

Download(s)

13
Updated on Dec 5, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.