Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/158342
Title: Unsupervised domain adaptation on object recognition
Authors: Wang, Boxiang
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Wang, B. (2022). Unsupervised domain adaptation on object recognition. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/158342
Abstract: Together with the development of deep neural networks, artificial intelligence is getting unprecedented accuracies on various tasks, including Computer Vision, Natural Language Processing, etc. Accuracies on certain datasets have improved more than 50% in less than ten years. Yet these numbers are acquired in similar datasets, which means the training data and the testing data are from the same domain. When dealing with datasets that fell in another domain, the well-trained model might not be able to output a satisfactory result. In this situation, domain adaptation is proposed as a solution to deal with the differences between data domains. Besides, previous models are not as helpful when dealing with unlabeled datasets, which is unavoidable in real-world situations. With the goal to solve this problem in the area of object recognition, this project wants to create a novel solution for Unsupervised Domain Adaptation on Object Recognition. In this project, different solutions of unsupervised domain adaptation are evaluated, and their performances are studied, their corresponding advantages and disadvantages are discussed. Then, a new model using a transformer as its backbone is proposed, with the help of pseudo labeling and the Cross Attention mechanism. By using this model, we could not only increase the accuracies of the domain adaptation tasks but also reduce the needed time and resources to train and inference.
URI: https://hdl.handle.net/10356/158342
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Final Report.pdf
  Restricted Access
1.03 MBAdobe PDFView/Open

Page view(s)

54
Updated on Sep 23, 2023

Download(s)

12
Updated on Sep 23, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.