Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/158562
Title: | Future power grid architecture and energy management for possible zero carbon emission | Authors: | Wen, Fankai | Keywords: | Engineering::Electrical and electronic engineering | Issue Date: | 2022 | Publisher: | Nanyang Technological University | Source: | Wen, F. (2022). Future power grid architecture and energy management for possible zero carbon emission. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/158562 | Abstract: | Owing to the environmental problem caused by traditional energy resource, there has been increasing concern about the development of renewable energy in recent years. Being environmentally friendly, renewable energy such as solar power and wind power has been widely integrated in the power system to take over fossil fuel. Renewable energy is gradually becoming more efficient and cheaper around the world. In many countries, more than 20% energy supply comes from renewable energy. Besides being non-polluting, renewable energy exists worldwide while fossil fuels exist in limited areas. With the development of renewable energy, other technologies such as distributed generation (DG), energy storage system (ESS), demand response (DR) are also prevailing. In the near future, higher penetration of renewable energy along with other technologies will be integrated to the power grid, which will definitely require enhancement of the whole system including transmission system. Thus, expansion of the transmission system is indispensable. The intermittency and stochasticity of renewable energy brings uncertainty to power generation, posing difficulty in system planning and management. To cope with the dreadful drawbacks, energy management techniques such as transmission expansion planning (TEP) have to be updated in these years. In traditional power grid, fossil fuels dominate the power generation. Renewable energy is rarely considered in transmission expansion planning problems, which is to minimize the total cost of line investment and grid operation. In this dissertation, high percentage of renewable energy generation and ESSs are integrated into transmission expansion planning problems. Then the proposed modelling and solving method are tested and analyzed on the IEEE-6 and IEEE-24 system. After expanding the transmission system, the energy management with ESSs is applied to the power grid and corresponding analysis is illustrated. | URI: | https://hdl.handle.net/10356/158562 | Schools: | School of Electrical and Electronic Engineering | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertation-Wen Fankai.pdf Restricted Access | 3.45 MB | Adobe PDF | View/Open |
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.