Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/158624
Title: Risk-based level of safety for low-altitude drone operations
Authors: Baldewa, Rahul
Keywords: Engineering::Mechanical engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Baldewa, R. (2022). Risk-based level of safety for low-altitude drone operations. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/158624
Abstract: With the rapid growth of the UAS industry and its applications across different sectors, there has been a steady rise in the number of commercial UAS operations. Although the use of UAS has significant cost benefits, it is important to mitigate the risk posed by UAS to the third parties on the ground. Environmental factors like the weather; human errors; and simply the loss of control or failure of UAS due to system characteristics can lead to fatal injuries to people on the ground. The study aims to identify and quantify the possible third-party risk factors to integrate them into the Third-Party Risk assessment framework. This study makes use of Monte Carlo simulations to approximate the ground fatality rate for a single UAS operation per flight hour in Singapore. A mean ground fatality rate is computed by taking the average ground fatality rate of all 55 planning areas in Singapore. This value is benchmarked with the Target Level of Safety to conclude whether a UAS is deemed fit for use in the high-density urban environment of Singapore. A risk map for the ground fatality rate for 55 planning areas in Singapore is also presented to indicate which zones are clear for UAS operations and which require mitigations to allow the functioning of the unmanned aircraft. Future research can be done to improve the population movement and shelter factor so that it does not overestimate the ground fatality rate. Insights from this study will be useful in assessing the acceptable fatality risk posed to commuters on the ground. This will be beneficial for aviation authorities in communicating the allowable risk to UA operators in various regions in Singapore.
URI: https://hdl.handle.net/10356/158624
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Final_Report_RahulBaldewa.pdf
  Restricted Access
2.35 MBAdobe PDFView/Open

Page view(s)

72
Updated on Sep 29, 2023

Download(s) 50

21
Updated on Sep 29, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.