Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/158908
Title: Long-term clothes-changing person re-identification
Authors: Lu, Moyang
Keywords: Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Lu, M. (2022). Long-term clothes-changing person re-identification. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/158908
Abstract: Person Re-Identification(Person ReID) focuses on the searching and identifica- tion of pedestrians in cross-camera scenery. It can be regarded as a signif- icant complement to face recognition, providing sufficient features when face information cannot be obtained. Long Term Person Reid is a challenging sub- question that aims to match the same target for a long duration, and because it is a long-term problem, the individuals could be captured wearing different clothes. We assume that the face information is not accessible, because in the surveillance image, the faces are always very blurry or occluded. This disser- tation explores the performance of current representative methods on different datasets and sub-datasets, including more than 80 comparative experiments to compare the performance between using the human scale, gait features, seman- tically guided methods and ResNet50 baseline for comparison. In addition, dif- ferent datasets are also used for testing, including pure clothes changing datasets and hybrid datasets as well as different sub-datasets to test the performance of various methods. At the same time, based on the structure of ResNet50, this dissertation tries to add a mask structure to the building block, hoping to im- prove the model’s ability to perceive specific areas. In addition, for the semantic guidance method with better effect, this dissertation obtained a series of bench- mark results under different datasets. And it tested the influence of different data processing methods on the experimental results. Improvements were made and many meaningful and groundbreaking conclusions were drawn.
URI: https://hdl.handle.net/10356/158908
Schools: School of Electrical and Electronic Engineering 
Research Centres: Rapid-Rich Object Search (ROSE) Lab 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
LU MOYANG ( G2103518C).pdf
  Restricted Access
1.3 MBAdobe PDFView/Open

Page view(s)

121
Updated on Oct 2, 2023

Download(s)

10
Updated on Oct 2, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.