Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Si Yingen_US
dc.identifier.citationTan, S. Y. (2022). Characteristics of bubble rise in a liquid. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractThe study of bubble dynamics has been an active area of research. Extensive experimental and numerical research has been conducted to investigate the rising motion of a single bubble. Many studies have concluded that bubbles reach terminal velocity which greatly simplifies the calculations of a de-aeration chamber design for minimising attrition. This experimental study aimed to reaffirm that bubbles reach terminal velocity and to extend past studies by examining a wider range of bubbles with varying sizes from approximately 5 mm to 20 mm in diameter and in fluid mediums of varying viscosities – glycerol and aqueous glycerol solution. The study examined the bubble shape, size and trajectory during ascension, as well as the effects of fluid viscosity, bubble velocity and aspect ratio on drag coefficient and Reynolds number. The experimental results concluded that bubbles can reach terminal velocity after rising approximately 40 mm and the terminal rise velocity is highly correlated to the mean bubble width when ascending in higher viscosity fluids. Simultaneously, the trajectory and the bubble shape, in terms of aspect ratio, are observed to be highly dependent on both bubble size and fluid viscosity, which affects the components of a drag force. Slight deviations from the standard drag coefficient curve for a solid sphere could be due to the differences in aspect ratio which affect the bubble frontal area given that the bubble volume remains constant.en_US
dc.publisherNanyang Technological Universityen_US
dc.subjectEngineering::Civil engineeringen_US
dc.titleCharacteristics of bubble rise in a liquiden_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorChiew Yee Mengen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.description.degreeBachelor of Engineering (Civil)en_US
item.fulltextWith Fulltext-
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Tan Si Ying_Actual Report v.4.pdf
  Restricted Access
2nd time uploading as I might have cancelled the 1st submission on accident3.77 MBAdobe PDFView/Open

Page view(s)

Updated on Apr 17, 2024


Updated on Apr 17, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.