Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLim, Monica Si Huien_US
dc.identifier.citationLim, M. S. H. (2022). Digitalization of mass vibratory polishing process for aerospace application. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractIn the aerospace industry, vibratory polishing is generously used for surface modification processes. This process is specially utilized as it can attain low surface roughness values to improve fulfilment and efficiency of components. Vibratory polishing also known as vibropolishing, is a relatively new manufacturing process. It still lacks a competent process monitoring and control system to integrate into the shop floor. The primary objective of this project is to deploy sensors in vibratory polishing to monitor real time process conditions. The secondary objective is to analyze the data and correlate the results to the polishing process and establish process control limits. The project involves identifying suitable sensors to monitor the polishing machines and process, also to develop fixtures to incorporate the sensors in the machine at appropriate locations. This can help to monitor the polishing process through sensor data collection and signal analysis, which in turns identify the process control limits and demonstrates full digitalization of the vibratory polishing process. The preliminary phase of this project is to create a deeper understanding of the process of vibratory finishing and identifying the critical process parameters. The first objective is to develop a digitalization program in LabVIEW which will work hand in hand with various sensors that were deployed across the trough to gather raw data. The trough vibration dynamics and characteristics can therefore be analyzed and understood from the data collected. The subsequent phase of this project is to analyze the data acquired from the accelerometers at different positions and it has found that the workpiece when placed at the most bottom of a trough will experience the highest vertical displacement. Moving forward, the force sensor data investigated the desirable positions in the trough that produced the maximum shear force were Positions (1, 1, 2) and (2, 1, 3) with validation from the mass loss and surface roughness values after vibratory polishing. In conclusion, this project serves to continue the advancements of a real-time vibratory finishing monitoring system and establish its control limits. It is necessary to execute more experiments to comprehend the trough dynamics and relativity between the input and output parameters of the process.en_US
dc.publisherNanyang Technological Universityen_US
dc.subjectEngineering::Aeronautical engineeringen_US
dc.titleDigitalization of mass vibratory polishing process for aerospace applicationen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorYeo Swee Hocken_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor of Engineering (Aerospace Engineering)en_US
dc.contributor.researchRolls-Royce@NTU Corporate Laben_US
dc.contributor.supervisor2Arun Prasanth Nagalingam, Ph.D.en_US
item.fulltextWith Fulltext-
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Final FYP Report_Monica Lim Si Hui.pdf
  Restricted Access

Page view(s)

Updated on Dec 3, 2023


Updated on Dec 3, 2023

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.