Please use this identifier to cite or link to this item:
Title: 3D printing of thermoplastic polyurethane TPMS structures via selective laser sintering
Authors: Lee, Jia Shin
Keywords: Engineering::Mechanical engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Lee, J. S. (2022). 3D printing of thermoplastic polyurethane TPMS structures via selective laser sintering. Final Year Project (FYP), Nanyang Technological University, Singapore.
Project: A016
Abstract: According to American Society for Testing and Materials (ASTM), additive manufacturing (AM) is defined as “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies”. This project aims to study the compressive behaviours and energy absorption potential of pure and blended triply periodic minimal surfaces (TPMS) lattice structures, printed through SLS using TPU as the main material. The compressive behaviours of each SLS printed TPU lattice structure during compressive test were observed, and the compression deformation stages were identified at a few stages of overall strain. It is observed in this study, for pure TPMS lattice structure, every single layer of lattice structure is compressed and deformed simultaneously throughout the compression process before densification. For blended TPMS lattice structure, the TPMS lattice structure with lower specific energy absorption will achieve complete compression deformation first and followed by the complete compression deformation of TPMS lattice structure with higher specific energy absorption. Pure TPMS lattice structure exhibits uniform compression deformation throughout compression process. The structure uniqueness in blended TPMS lattice structure, exhibits non-uniform compression deformation throughout compression process. Overall, Schwarz TPMS lattice structure is the best pure TPMS lattice structure with the highest energy absorption performance. Diamond-Schwarz TPMS lattice exhibited the highest energy absorption performance among blended TPMS lattice structures. The findings of higher onset densification strain and lightweight properties in Diamond-Schwarz TPMS lattice through this study, suggests that it has the potential to be used as an energy absorber in aerospace, automotive, and biomedical applications.
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FINAL YEAR PROJECT (A016 - U1720822L).pdf
  Restricted Access
3.88 MBAdobe PDFView/Open

Page view(s)

Updated on Feb 20, 2024

Download(s) 50

Updated on Feb 20, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.