Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/159286
Title: Great enhancement effect of 20-40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector
Authors: Han, Shun
Xia, Hao
Lu, Youming
Hu, Sirong
Zhang, Dao Hua
Xu, Wangying
Fang, Ming
Liu, Wenjun
Cao, Peijiang
Zhu, Deliang
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2021
Source: Han, S., Xia, H., Lu, Y., Hu, S., Zhang, D. H., Xu, W., Fang, M., Liu, W., Cao, P. & Zhu, D. (2021). Great enhancement effect of 20-40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector. ACS Omega, 6(10), 6699-6707. https://dx.doi.org/10.1021/acsomega.0c05555
Journal: ACS Omega
Abstract: High-performance solar-blind UV detector with high response and fast speed is needed in multiple types of areas, which is hard to achieve in one device with a simple structure and device fabrication process. Here, the effects of Ag nanoparticles (NPs) with different sizes on UV response characteristics of the device are studied, the Ag NPs with different sizes that are made from a simple vacuum anneal method. Ag NPs with different sizes could modulate the peak response position of the mixed-phase MgZnO detector from near UV range (350 nm) to deep UV range (235 nm), and the enhancement effect of the Ag NPs on the UV response differs much with the crystal structure and the basic UV response of the MgZnO thin film. When high density 20-40 nm Ag NPs is induced, the deep UV (235 nm) response of the mixed-phase MgZnO detector is increased by 226 times, the I uv/I dark ratio of the modified device is increased by 17.5 times. The slight enhancement in UV light intensity from 20 to 40 nm Ag NPs induces multiple tunnel breakdown phenomena within the mixed-phase MgZnO thin film, which is the main reason for the abnormal great enhancement effect on deep UV response of the device, so the recovery speed of the modified device is not influenced. Therefore, Ag NPs with different sizes could effectively modulate the UV response peak position of mixed-phase MgZnO thin films, and the introduction of Ag NPs with high density and small size is a simple way to greatly increase the sensitivity of the mixed-phase MgZnO detector at deep UV light without decreasing the device speed.
URI: https://hdl.handle.net/10356/159286
ISSN: 2470-1343
DOI: 10.1021/acsomega.0c05555
Rights: © 2021 The Authors. Published by American Chemical Society. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Dec 7, 2022

Web of ScienceTM
Citations 50

1
Updated on Dec 4, 2022

Page view(s)

25
Updated on Dec 9, 2022

Download(s)

1
Updated on Dec 9, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.