Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/159305
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuan, Pengchaoen_US
dc.contributor.authorLiang, Shuquanen_US
dc.contributor.authorLu, Binganen_US
dc.contributor.authorFan, Hong Jinen_US
dc.contributor.authorZhou, Jiangen_US
dc.date.accessioned2022-06-14T02:27:26Z-
dc.date.available2022-06-14T02:27:26Z-
dc.date.issued2022-
dc.identifier.citationRuan, P., Liang, S., Lu, B., Fan, H. J. & Zhou, J. (2022). Design strategies for high-energy-density aqueous zinc batteries. Angewandte Chemie International Edition, 61(17), e202200598-. https://dx.doi.org/10.1002/anie.202200598en_US
dc.identifier.issn1433-7851en_US
dc.identifier.urihttps://hdl.handle.net/10356/159305-
dc.description.abstractIn recent years, the increasing demand for high-capacity and safe energy storage has focused attention on zinc batteries featuring high voltage, high capacity, or both. Despite extensive research progress, achieving high-energy-density zinc batteries remains challenging and requires the synergistic regulation of multiple factors including reaction mechanisms, electrodes, and electrolytes. In this Review, we comprehensively summarize the rational design strategies of high-energy-density zinc batteries and critically analyze the positive effects and potential issues of these strategies in optimizing the electrochemistry, cathode materials, electrolytes, and device architecture. Finally, the challenges and perspectives for the further development of high-energy-density zinc batteries are outlined to guide research towards new-generation batteries for household appliances, low-speed electric vehicles, and large-scale energy storage systems.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationRG157/19en_US
dc.relation.ispartofAngewandte Chemie International Editionen_US
dc.rightsThis is the peer reviewed version of the following article: Ruan, P., Liang, S., Lu, B., Fan, H. J. & Zhou, J. (2022). Design strategies for high-energy-density aqueous zinc batteries. Angewandte Chemie, 61(17), e202200598-, which has been published in final form at https://doi.org/10.1002/anie.202200598. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.en_US
dc.subjectEngineering::Materials::Energy materialsen_US
dc.titleDesign strategies for high-energy-density aqueous zinc batteriesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1002/anie.202200598-
dc.description.versionSubmitted/Accepted versionen_US
dc.identifier.pmid35104009-
dc.identifier.scopus2-s2.0-85125486635-
dc.identifier.issue17en_US
dc.identifier.volume61en_US
dc.identifier.spagee202200598en_US
dc.subject.keywordsBatteriesen_US
dc.subject.keywordsCathode Materialsen_US
dc.description.acknowledgementThis work was supported by the National Natural Science Foundation of China (Grant Nos. 51972346, 51932011), the Hunan Outstanding Youth Talents (2021JJ10064), the Program of Youth Talent Support for Hunan Province (2020RC3011), and the Innovation-Driven Project of Central South University (No. 2020CX024). H.J.F. acknowledges the financial support from the Ministry of Education by a Tier 1 grant (RG157/19).en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Angewandte Chemie.pdf30.51 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 1

350
Updated on Feb 23, 2024

Web of ScienceTM
Citations 1

294
Updated on Oct 27, 2023

Page view(s)

113
Updated on Feb 27, 2024

Download(s)

41
Updated on Feb 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.