Please use this identifier to cite or link to this item:
Title: Numerical solver for the time-dependent far-from-equilibrium Boltzmann equation
Authors: Wais, M.
Held, Karsten
Battiato, Marco
Keywords: Science::Physics
Issue Date: 2021
Source: Wais, M., Held, K. & Battiato, M. (2021). Numerical solver for the time-dependent far-from-equilibrium Boltzmann equation. Computer Physics Communications, 264, 107877-.
Project: NAP-SUG
Journal: Computer Physics Communications
Abstract: The study of strongly out-of-equilibrium states and their time evolution towards thermalization is critical to the understanding of an ever widening range of physical processes. We present a numerical method that for the first time allows for the numerical solution of the most difficult part of the time-dependent Boltzmann equation: the full scattering term. Any number of bands (and quasiparticles) with arbitrary dispersion, any number of high order scattering channels (we show here four legs scatterings: electron-electron scattering) can be treated far from equilibrium. No assumptions are done on the population and all the Pauli-blocking factors are included in the phase-space term of the scattering. The method can be straightforwardly interfaced to a deterministic solver for the transport. Finally and most critically, the method conserves to machine precision the particle number, momentum and energy for any resolution, making the computation of the time evolution till complete thermalization possible. We apply this approach to two examples, a metal and a semiconductor, undergoing thermalization from a strongly out-of-equilibrium laser excitation. These two cases, which are in literature treated hitherto under a number of approximations, can be addressed free from those approximations and straightforwardly within the same numerical method.
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2021.107877
Rights: © 2021 Published by Elsevier B.V. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Citations 50

Updated on Dec 4, 2022

Web of ScienceTM
Citations 50

Updated on Dec 2, 2022

Page view(s)

Updated on Dec 6, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.