Please use this identifier to cite or link to this item:
Title: Maximized pseudo-graphitic content in self-supported hollow interconnected carbon foam boosting ultrastable Na-ion storage
Authors: Ye, Xinli
Wang, Haisheng
Chen, Zhaofeng
Li, Min
Wang, Ting
Wu, Cao
Zhang, Junxiong
Shen, Zexiang
Keywords: Science::Physics
Issue Date: 2021
Source: Ye, X., Wang, H., Chen, Z., Li, M., Wang, T., Wu, C., Zhang, J. & Shen, Z. (2021). Maximized pseudo-graphitic content in self-supported hollow interconnected carbon foam boosting ultrastable Na-ion storage. Electrochimica Acta, 371, 137776-.
Project: RG103/16
MOE2016-T3-1-006 (S)
Journal: Electrochimica Acta
Abstract: Hard carbons are the most promising commercialized anodes for sodium-ion batteries (SIBs). However, it is still a great challenge to design highly stable hard carbon anodes coupled with a large reversible capacity. Herein, a self-supported hollow interconnected carbon foam (HICF) is developed by one-step pyrolysis of a commercial and low-cost melamine sponge. The integration of interconnected network and hollow feature can not only provide strong mechanical stability and additional inner space to effectively accommodate the structural deformation from Na+ insertion/extraction, but also enable fast electron and Na-ion transport to achieve a large reversible capacity. As a result, HICF delivers a large reversible capacity of 306 mAh g−1 at 100 mA g−1 and an ultralong cycle life with 86.4% capacity retention over 1000 cycles at 1000 mA g−1. The superior Na-storage performance is also contributed by the maximized content (63.24%) of pseudo-graphitic phase in HICF realized by tuning pyrolysis time, as the pseudo-graphitic phase could store more sodium ions and maintain more stable microstructure owing to its appropriate D-spacing than highly disordered phase. Furthermore, kinetic analysis based on cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) verifies the adsorption–intercalation mechanism. This work provides a low-cost and high-performance anode candidate for the future practical applications of SIBs.
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2021.137776
Schools: School of Physical and Mathematical Sciences 
School of Materials Science and Engineering 
Rights: © 2021 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles
SPMS Journal Articles

Citations 50

Updated on Sep 30, 2023

Web of ScienceTM
Citations 20

Updated on Sep 28, 2023

Page view(s)

Updated on Sep 30, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.