Please use this identifier to cite or link to this item:
Title: Performance evaluation of thick polymeric composites
Authors: Muhammad Faiz Misnam
Keywords: Engineering::Mechanical engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Muhammad Faiz Misnam (2022). Performance evaluation of thick polymeric composites. Final Year Project (FYP), Nanyang Technological University, Singapore.
Abstract: The final year project aims at examining the mechanical behaviour of thick polymeric composites. Comparisons are made between thick and thin composites to determine the effects of thickness on the properties of the material. Fabrications of different thickness composites are carried out followed by mechanical testing. Polyester fabric was used as the reinforcement and thermoplastic polyurethane film as the matrix. Hot pressing process was used to produce the composites and several experimental tests were performed to optimise the fabrication parameters. Cured composites are then cut with a bandsaw machine to the dimensions of test specimens as in the guidelines of ASTM standards. Shimadzu universal testing machine was used to carry out 3-point bend test, 4-point bend test, and compression test. Data generated from the machine’s software are then used to plot stress-strain graphs for analysation. Values like yield point, maximum flexural/compression stress, and modulus are retrieved from the graphs generated. Processing parameters and defects can affect the performance of the material and its properties. Defects like delamination, which are significant in polymeric composite, can be seen in thicker specimens during testing. Results also show that thicker composites have lower Young’s modulus as compared to thin composites.
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP B202 Report_Muhammad Faiz Bin Misnam.pdf
  Restricted Access
10.21 MBAdobe PDFView/Open

Page view(s)

Updated on Dec 7, 2023

Download(s) 50

Updated on Dec 7, 2023

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.