Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/159837
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Keyu | en_US |
dc.contributor.author | Zeng, Zhaoyang | en_US |
dc.contributor.author | Yang, Jianfei | en_US |
dc.date.accessioned | 2022-07-04T05:53:40Z | - |
dc.date.available | 2022-07-04T05:53:40Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Chen, K., Zeng, Z. & Yang, J. (2021). A deep region-based pyramid neural network for automatic detection and multi-classification of various surface defects of aluminum alloys. Journal of Building Engineering, 43, 102523-. https://dx.doi.org/10.1016/j.jobe.2021.102523 | en_US |
dc.identifier.issn | 2352-7102 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/159837 | - |
dc.description.abstract | Aluminum alloys have a wide range of applications in building and civil infrastructure. During the process of production, transportation and storage, various defects inevitably occur on the material, including blisters, scratches, base exposure, dirty points, etc. The efficiency and accuracy of defect detection and classification can be greatly improved by replacing the conventional manual approaches with modern deep learning techniques. This paper proposes to use computer vision and deep learning techniques to achieve automatic detection of various defects of aluminum alloys. Faster region-based convolutional neural network (Faster R–CNN) is selected as the fundamental framework due to its advantages in efficiency and accuracy. According to the characteristics of defects in aluminum alloys, the framework is optimized by (1) feature pyramid networks (FPN) for integration of low-level structural information with high-level semantic information, as well as increasing the feature mapping resolution of small targets; (2) deformable-ConvNets for feature extraction at the most appropriate places; and (3) contextual ROI pooling for fine adjustment of region proposal taking the entire image as a reference. To make full use of the limited samples, the training process is also optimized by (1) utilizing samples without defects; and (2) sample duplication by horizontal and vertical rotation. The proposed approach is validated on a dataset with 10000 images and is shown to have outstanding performance compared to other existing deep learning approaches in defect detection and classification. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Building Engineering | en_US |
dc.rights | © 2021 Elsevier Ltd. All rights reserved. | en_US |
dc.subject | Engineering::Electrical and electronic engineering | en_US |
dc.title | A deep region-based pyramid neural network for automatic detection and multi-classification of various surface defects of aluminum alloys | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Electrical and Electronic Engineering | en_US |
dc.identifier.doi | 10.1016/j.jobe.2021.102523 | - |
dc.identifier.scopus | 2-s2.0-85105698328 | - |
dc.identifier.volume | 43 | en_US |
dc.identifier.spage | 102523 | en_US |
dc.subject.keywords | Aluminum Alloys | en_US |
dc.subject.keywords | Defect Detection | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | EEE Journal Articles |
SCOPUSTM
Citations
20
11
Updated on Sep 22, 2023
Page view(s)
42
Updated on Sep 27, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.