Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Le-Yuen_US
dc.contributor.authorOparina, Ekaterinaen_US
dc.contributor.authorPowdthavee, Nattavudhen_US
dc.contributor.authorSrisuma, Sorawooten_US
dc.date.accessioned2022-07-12T01:56:25Z-
dc.date.available2022-07-12T01:56:25Z-
dc.date.issued2022-
dc.identifier.citationChen, L., Oparina, E., Powdthavee, N. & Srisuma, S. (2022). Robust ranking of happiness outcomes: a median regression perspective. Journal of Economic Behavior and Organization, 200, 672-686. https://dx.doi.org/10.1016/j.jebo.2022.06.010en_US
dc.identifier.issn0167-2681en_US
dc.identifier.urihttps://hdl.handle.net/10356/160031-
dc.description.abstractOrdered probit and logit models have been frequently used to estimate the mean ranking of happiness outcomes (and other ordinal data) across groups. However, it has been recently highlighted that such ranking may not be identified in most happiness applications. We suggest researchers focus on median comparison instead of the mean. This is because the median rank can be identified even if the mean rank is not. Furthermore, median ranks in probit and logit models can be readily estimated using standard statistical softwares. The median ranking, as well as ranking for other quantiles, can also be estimated semiparametrically and we provide a new constrained mixed integer optimization procedure for implementation. We apply it to estimate a happiness equation using General Social Survey data of the US.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Economic Behavior and Organizationen_US
dc.rights© 2022 Elsevier B.V. All rights reserved. This paper was published in Journal of Economic Behavior and Organization and is made available with permission of Elsevier B.V.en_US
dc.subjectSocial sciences::Economic developmenten_US
dc.titleRobust ranking of happiness outcomes: a median regression perspectiveen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Social Sciencesen_US
dc.identifier.doi10.1016/j.jebo.2022.06.010-
dc.description.versionSubmitted/Accepted versionen_US
dc.identifier.volume200en_US
dc.identifier.spage672en_US
dc.identifier.epage686en_US
dc.subject.keywordsMedian Regressionen_US
dc.subject.keywordsMixed Integer Optimizationen_US
item.grantfulltextembargo_20250831-
item.fulltextWith Fulltext-
Appears in Collections:SSS Journal Articles
Files in This Item:
File Description SizeFormat 
COPS_JEBO_manuscript_2nd_round.pdf
  Until 2025-08-31
420.76 kBAdobe PDFUnder embargo until Aug 31, 2025

SCOPUSTM   
Citations 50

3
Updated on Nov 27, 2023

Web of ScienceTM
Citations 50

2
Updated on Oct 23, 2023

Page view(s)

95
Updated on Dec 5, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.