Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKricker, Andrewen_US
dc.contributor.authorWong, Zenasen_US
dc.date.accessioned2022-07-12T02:55:22Z-
dc.date.available2022-07-12T02:55:22Z-
dc.date.issued2021-
dc.identifier.citationKricker, A. & Wong, Z. (2021). Random walks on graphs and approximation of L²-Invariants. Acta Mathematica Vietnamica, 46(2), 309-319. https://dx.doi.org/10.1007/s40306-021-00425-2en_US
dc.identifier.issn0251-4184en_US
dc.identifier.urihttps://hdl.handle.net/10356/160048-
dc.description.abstractIn this work, we interpret right multiplication operators Rw: l2(G) → l2(G) , w∈ ℂ[G] as random walk operators on certain labelled graphs we employ that are analogous to Cayley graphs. Applying a generalization of the graph convergence defined by R. I. Grigorchuk and A. Żuk to these graphs gives a new interpretation and proof of a special case of W. Lück’s famous Theorem on the Approximation of L2-Betti numbers for countable residually finite groups by means of exhausting towers of finite-index subgroups. In particular, using this interpretation, the theorem follows naturally from standard theorems in probability theory concerning the weak convergence of probability measures that are characterized by their moments. This paper is mainly a direct adaptation of the ideas of Grigorchuk, Zuk̇ and Lück to this setting. We aim to explain how these ideas are related and give a short exposition of them.en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.language.isoenen_US
dc.relationRG 32/17en_US
dc.relation.ispartofActa Mathematica Vietnamicaen_US
dc.rights© 2021 Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd.en_US
dc.subjectScience::Mathematicsen_US
dc.titleRandom walks on graphs and approximation of L²-Invariantsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1007/s40306-021-00425-2-
dc.identifier.scopus2-s2.0-85105446414-
dc.identifier.issue2en_US
dc.identifier.volume46en_US
dc.identifier.spage309en_US
dc.identifier.epage319en_US
dc.subject.keywordsRandom Walksen_US
dc.subject.keywordsSpectral Density Functionen_US
dc.description.acknowledgementThis research was supported by the Nanyang Technological University Academic Research Fund Tier 1 Grant RG 32/17.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Sep 25, 2023

Page view(s)

43
Updated on Sep 23, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.