Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160292
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDing, Shuyaen_US
dc.contributor.authorDong, Chaoyuen_US
dc.contributor.authorZhao, Tianyangen_US
dc.contributor.authorKoh, Liang Mongen_US
dc.contributor.authorBai, Xiaoyinen_US
dc.contributor.authorLuo, Junen_US
dc.date.accessioned2022-07-19T01:40:43Z-
dc.date.available2022-07-19T01:40:43Z-
dc.date.issued2020-
dc.identifier.citationDing, S., Dong, C., Zhao, T., Koh, L. M., Bai, X. & Luo, J. (2020). A meta-learning based multimodal neural network for multistep ahead battery thermal runaway forecasting. IEEE Transactions On Industrial Informatics, 17(7), 4503-4511. https://dx.doi.org/10.1109/TII.2020.3015555en_US
dc.identifier.issn1551-3203en_US
dc.identifier.urihttps://hdl.handle.net/10356/160292-
dc.description.abstractAn effective forecast method to trigger Thermal Runaway (TR) warning in an early stage is essential for monitoring battery safety. In this article, we propose a novel data-driven approach to perform multistep ahead forecast accurately for battery TR state at cell-level. We formulate this forecasting task as an imbalance data classification task and propose meta thermal runaway forecasting neural network (Meta-TRFNN) to solve it. Essentially, we exploit high-dimensional thermal images along with low-dimensional temperature and voltage data to capture a more representative thermal profile. Moreover, we adapt a meta-learning framework to handle the data deficiency problem. We evaluate Meta-TRFNN on simulated samples and also explore its applicability in the real world with real samples. Although this classification task is highly imbalanced, Meta-TRFNN is still proven effective with limited historical information. Our further comparison experiments not only demonstrate the forecasting ability of Meta-TRFNN, but also validate the benefit of involving high-dimensional thermal images and the efficacy of meta-learning framework.en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRF2016ENC-ESS001-022en_US
dc.relation.ispartofIEEE Transactions on Industrial Informaticsen_US
dc.rights© 2020 IEEE. All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleA meta-learning based multimodal neural network for multistep ahead battery thermal runaway forecastingen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.contributor.researchEnergy Research Institute @ NTU (ERI@N)en_US
dc.identifier.doi10.1109/TII.2020.3015555-
dc.identifier.scopus2-s2.0-85104196858-
dc.identifier.issue7en_US
dc.identifier.volume17en_US
dc.identifier.spage4503en_US
dc.identifier.epage4511en_US
dc.subject.keywordsFeature Extractionen_US
dc.subject.keywordsBatteriesen_US
dc.description.acknowledgementThis work was supported in part by the Energy Program Energy Storage System Test Bed Project under Grant NRF2016ENC-ESS001-022, and in part by the Energy Research Institute at Nanyang Technological University (Singapore).en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:ERI@N Journal Articles
SCSE Journal Articles

SCOPUSTM   
Citations 20

19
Updated on Dec 5, 2023

Web of ScienceTM
Citations 20

16
Updated on Oct 29, 2023

Page view(s)

76
Updated on Dec 7, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.