Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/160393
Title: | Molecular dynamics investigation of membrane fouling in organic solvents | Authors: | Ma, Yunqiao Velioğlu, Sadiye Yin, Ziqiang Wang, Rong Chew, Jia Wei |
Keywords: | Engineering::Chemical engineering | Issue Date: | 2021 | Source: | Ma, Y., Velioğlu, S., Yin, Z., Wang, R. & Chew, J. W. (2021). Molecular dynamics investigation of membrane fouling in organic solvents. Journal of Membrane Science, 632, 119329-. https://dx.doi.org/10.1016/j.memsci.2021.119329 | Project: | A20B3a0070 A2083c0049 2019-T1-002-065 RG100/19 |
Journal: | Journal of Membrane Science | Abstract: | Membrane fouling, which is a key obstacle in implementing membrane technology, has been studied extensively for aqueous feeds. With increasing interests in organic solvent applications, a corresponding effort on understanding membrane fouling is warranted. This study employs molecular dynamics simulations to unveil the mechanisms underlying the different adsorption behaviors of dextran onto a polyacrylonitrile (PAN) membrane in three polar and protic solvents, namely, water, formamide and ethanol. The dextran-membrane separation distance is the lowest for water, followed by ethanol then formamide, which agrees with the worse flux decline for water relative to formamide observed experimentally. The greatest adsorption tendency in water is tied to the most attractive dextran-membrane interaction. On the other hand, the lower adsorption tendency in formamide and ethanol is linked to enhanced solvation of the dextran molecule and membrane, which deters dextran adsorption onto the membrane. Specifically, formamide, which leads to the least adsorption, exhibits the most attractive solvent-dextran and solvent-membrane interaction energies, the highest solvent-accessible surface area (SASA) for dextran, and also the highest density of solvent molecules in the solvation shell closest to the membrane. As for ethanol, it gives the highest density of solvent molecules in the solvation shell closest to a part of the dextran. The solvation of foulant and membrane by water deviates from that by other similarly polar and protic solvents, which has important implications in membrane fouling and highlights the need for enhancing the understanding of membrane fouling behaviors in organic solvents. | URI: | https://hdl.handle.net/10356/160393 | ISSN: | 0376-7388 | DOI: | 10.1016/j.memsci.2021.119329 | Schools: | School of Chemical and Biomedical Engineering Interdisciplinary Graduate School (IGS) School of Civil and Environmental Engineering |
Research Centres: | Nanyang Environment and Water Research Institute Singapore Membrane Technology Centre |
Rights: | © 2021 Elsevier B.V. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | CEE Journal Articles IGS Journal Articles NEWRI Journal Articles SCBE Journal Articles |
SCOPUSTM
Citations
20
11
Updated on Sep 15, 2023
Web of ScienceTM
Citations
20
10
Updated on Sep 21, 2023
Page view(s)
97
Updated on Sep 23, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.