Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/160461
Title: | A novel magnetic cooling device for long distance heat transfer | Authors: | Pattanaik, M. S. Cheekati, S. K. Varma, Vijaykumar Babulalji Ramanujan, R. V. |
Keywords: | Engineering::Materials | Issue Date: | 2022 | Source: | Pattanaik, M. S., Cheekati, S. K., Varma, V. B. & Ramanujan, R. V. (2022). A novel magnetic cooling device for long distance heat transfer. Applied Thermal Engineering, 201(Part A), 117777-. https://dx.doi.org/10.1016/j.applthermaleng.2021.117777 | Journal: | Applied Thermal Engineering | Abstract: | Effective transfer of waste heat is a major challenge in a plethora of industrial and commercial systems and devices. Prolonged operation at elevated temperatures can adversely affect system performance, reliability, and service life. Conventional heat pipes are limited by their heat transport performance limitation at longer device length scales. On the other hand, we show that a magnetic cooling device, based on ferrofluid thermomagnetic convection, can transfer heat over much longer distance. We report the development and performance of an 8 m perimeter racetrack-shaped magnetic cooling device, an order of magnitude longer than conventional heat pipes. The temperature drop at the heat load was up to 41 °C for an initial heat load temperature of 197 °C. Cooling increased for larger heat flux, revealing the self-pumping and self-regulating nature of our device. The local Nusselt number exhibited a maximum near strong magnetic fields, resulting in enhanced cooling. The power transferred from heat load to the heat sink is maximum at higher heat load temperature, whereas the total power loss is minimum. The simulated velocity and temperature profiles revealed vortex formation and disruption of the thermal boundary layer, which also increased cooling. Heat load cooling by 17 °C was predicted even for a 20 m perimeter magnetic heat pipe. Our magnetic cooling device is a ferrofluid-based passive device for long-distance heat transfer, making it attractive for a wide variety of engineering applications. | URI: | https://hdl.handle.net/10356/160461 | ISSN: | 1359-4311 | DOI: | 10.1016/j.applthermaleng.2021.117777 | Schools: | School of Materials Science and Engineering | Organisations: | Singapore-HUJ Alliance for Research and Enterprise Nanomaterials for Energy and Energy-Water Nexus Campus for Research Excellence and Technological Enterprise |
Rights: | © 2021 Elsevier Ltd. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles |
SCOPUSTM
Citations
50
7
Updated on Jun 3, 2023
Web of ScienceTM
Citations
20
7
Updated on Jun 6, 2023
Page view(s)
42
Updated on Jun 10, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.