Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160563
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xuhaoen_US
dc.contributor.authorWong, Patricia Jia Yiingen_US
dc.date.accessioned2022-07-26T08:40:49Z-
dc.date.available2022-07-26T08:40:49Z-
dc.date.issued2021-
dc.identifier.citationLi, X. & Wong, P. J. Y. (2021). Generalized Alikhanov's approximation and numerical treatment of generalized fractional sub-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 97, 105719-. https://dx.doi.org/10.1016/j.cnsns.2021.105719en_US
dc.identifier.issn1007-5704en_US
dc.identifier.urihttps://hdl.handle.net/10356/160563-
dc.description.abstractIn this paper, we develop a new approximation for the generalized fractional derivative, which is characterized by a scale function and a weight function. The new approximation is then used in the numerical treatment of a class of generalized fractional sub-diffusion equations. The theoretical aspects of solvability, stability and convergence are established rigorously in maximum norm by discrete energy methodology. Due to the new approximation, the theoretical temporal convergence order of the numerical scheme improves those of earlier work. To confirm, four examples are presented to illustrate the accuracy of the proposed scheme and to compare with other methods in the literature.en_US
dc.language.isoenen_US
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulationen_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.subjectScience::Mathematicsen_US
dc.titleGeneralized Alikhanov's approximation and numerical treatment of generalized fractional sub-diffusion equationsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1016/j.cnsns.2021.105719-
dc.identifier.scopus2-s2.0-85100431757-
dc.identifier.volume97en_US
dc.identifier.spage105719en_US
dc.subject.keywordsGeneralized Fractional Derivativeen_US
dc.subject.keywordsNumerical Schemeen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 50

6
Updated on Dec 4, 2023

Web of ScienceTM
Citations 50

6
Updated on Oct 24, 2023

Page view(s)

64
Updated on Dec 9, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.