Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160609
Title: Combined anomaly detection framework for digital twins of water treatment facilities
Authors: Wei, Yuying
Law, Adrian Wing-Keung
Yang, Chun
Tang, Di
Keywords: Engineering::Civil engineering
Issue Date: 2022
Source: Wei, Y., Law, A. W., Yang, C. & Tang, D. (2022). Combined anomaly detection framework for digital twins of water treatment facilities. Water, 14(7), 1001-. https://dx.doi.org/10.3390/w14071001
Project: NSoE_DeST-SCI2019-0011 
Journal: Water 
Abstract: Digital twins of cyber‐physical systems with automated process control systems using programmable logic controllers (PLCs) are increasingly popular nowadays. At the same time, cyber-physical security is also a growing concern with system connectivity. This study develops a combined anomaly detection framework (CADF) against various types of security attacks on the digital twin of process control in water treatment facilities. CADF utilizes the PLC‐based whitelist system to detect anomalies that target the actuators and the deep learning approach of natural gradient boosting (NGBoost) and probabilistic assessment to detect anomalies that target the sensors. The effectiveness of CADF is verified using a physical facility for water treatment with membrane processes called the Secure Water Treatment (SWaT) system in the Singapore University of Technology and Design. Various attack scenarios are tested in SWaT by falsifying the reported values of sensors and actuators in the digital twin process. These scenarios include both trivial attacks, which are commonly studied, as well as non‐trivial (i.e., sophisticated) attacks, which are rarely reported. The results show that CADF performs very well with good detection accuracy in all scenarios, and par-ticularly, it is able to detect all sophisticated attacks while ongoing before they can induce damage to the water treatment facility. CADF can be further extended to other cyber‐physical systems in the future.
URI: https://hdl.handle.net/10356/160609
ISSN: 2073-4441
DOI: 10.3390/w14071001
Schools: School of Civil and Environmental Engineering 
Interdisciplinary Graduate School (IGS) 
School of Mechanical and Aerospace Engineering 
Research Centres: Nanyang Environment and Water Research Institute 
Environmental Process Modelling Centre 
Rights: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles
IGS Journal Articles
MAE Journal Articles
NEWRI Journal Articles

Files in This Item:
File Description SizeFormat 
water-14-01001-v2.pdf3.64 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

6
Updated on Sep 27, 2023

Web of ScienceTM
Citations 50

5
Updated on Sep 29, 2023

Page view(s)

113
Updated on Oct 3, 2023

Download(s) 50

47
Updated on Oct 3, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.