Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xuhaoen_US
dc.contributor.authorWong, Patricia Jia Yingen_US
dc.date.accessioned2022-08-03T06:20:26Z-
dc.date.available2022-08-03T06:20:26Z-
dc.date.issued2022-
dc.identifier.citationLi, X. & Wong, P. J. Y. (2022). gL1 scheme for solving a class of generalized time-fractional diffusion equations. Mathematics, 10(8), 1219-. https://dx.doi.org/10.3390/math10081219en_US
dc.identifier.issn2227-7390en_US
dc.identifier.urihttps://hdl.handle.net/10356/160835-
dc.description.abstractIn this paper, a numerical scheme based on a general temporal mesh is constructed for a generalized time-fractional diffusion problem of order α. The main idea involves the generalized linear interpolation and so we term the numerical scheme the gL1 scheme. The stability and convergence of the numerical scheme are analyzed using the energy method. It is proven that the temporal convergence order is (2 − α) for a general temporal mesh. Simulation is carried out to verify the efficiency of the proposed numerical scheme.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematicsen_US
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titlegL1 scheme for solving a class of generalized time-fractional diffusion equationsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.3390/math10081219-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85128742152-
dc.identifier.issue8en_US
dc.identifier.volume10en_US
dc.identifier.spage1219en_US
dc.subject.keywordsGeneralized Fractional Derivativeen_US
dc.subject.keywordsTime-Diffusion Problemen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
mathematics-10-01219.pdf332.83 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

5
Updated on Feb 15, 2024

Web of ScienceTM
Citations 50

3
Updated on Oct 26, 2023

Page view(s)

50
Updated on Feb 21, 2024

Download(s)

13
Updated on Feb 21, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.