Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKu, Cheng Yeawen_US
dc.contributor.authorWong, Kok Binen_US
dc.date.accessioned2022-08-03T06:32:08Z-
dc.date.available2022-08-03T06:32:08Z-
dc.date.issued2021-
dc.identifier.citationKu, C. Y. & Wong, K. B. (2021). On the number of nonnegative sums for semi-partitions. Graphs and Combinatorics, 37(6), 2803-2823. https://dx.doi.org/10.1007/s00373-021-02393-8en_US
dc.identifier.issn0911-0119en_US
dc.identifier.urihttps://hdl.handle.net/10356/160838-
dc.description.abstractLet [ n] = { 1 , 2 , ⋯ , n}. Let ([n]k) be the family of all subsets of [n] of size k. Define a real-valued weight function w on the set ([n]k) such that ∑X∈([n]k)w(X)≥0. Let Un,t,k be the set of all P= { P1, P2, ⋯ , Pt} such that Pi∈([n]k) for all i and Pi∩ Pj= ∅ for i≠ j. For each P∈ Un,t,k, let w(P) = ∑ P∈Pw(P). Let Un,t,k+(w) be set of all P∈ Un,t,k with w(P) ≥ 0. In this paper, we show that |Un,t,k+(w)|≥∏1≤i≤(t-1)k(n-tk+i)(k!)t-1((t-1)!) for sufficiently large n.en_US
dc.language.isoenen_US
dc.relation.ispartofGraphs and Combinatoricsen_US
dc.rights© 2021 The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature. All rights reserved.en_US
dc.subjectScience::Mathematicsen_US
dc.titleOn the number of nonnegative sums for semi-partitionsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1007/s00373-021-02393-8-
dc.identifier.scopus2-s2.0-85112830101-
dc.identifier.issue6en_US
dc.identifier.volume37en_US
dc.identifier.spage2803en_US
dc.identifier.epage2823en_US
dc.subject.keywordsSubset Sumsen_US
dc.subject.keywordsExtremal Problemsen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

Page view(s)

34
Updated on Dec 9, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.