Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160901
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHang, Jiutaoen_US
dc.contributor.authorXu, Guangkuien_US
dc.contributor.authorGao, Huajianen_US
dc.date.accessioned2022-08-05T07:12:19Z-
dc.date.available2022-08-05T07:12:19Z-
dc.date.issued2022-
dc.identifier.citationHang, J., Xu, G. & Gao, H. (2022). Frequency-dependent transition in power-law rheological behavior of living cells. Science Advances, 8(18), eabn6093-. https://dx.doi.org/10.1126/sciadv.abn6093en_US
dc.identifier.issn2375-2548en_US
dc.identifier.urihttps://hdl.handle.net/10356/160901-
dc.description.abstractLiving cells are active viscoelastic materials exhibiting diverse mechanical behaviors at different time scales. However, dynamical rheological characteristics of cells in frequency range spanning many orders of magnitude, especially in high frequencies, remain poorly understood. Here, we show that a self-similar hierarchical model can capture cell's power-law rheological characteristics in different frequency scales. In low-frequency scales, the storage and loss moduli exhibit a weak power-law dependence on frequency with same exponent. In high-frequency scales, the storage modulus becomes a constant, while the loss modulus shows a power-law dependence on frequency with an exponent of 1.0. The transition between low- and high-frequency scales is defined by a transition frequency based on cell's mechanical parameters. The cytoskeletal differences of different cell types or states can be characterized by changes in mechanical parameters in the model. This study provides valuable insights into potentially using mechanics-based markers for cell classification and cancer diagnosis.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.language.isoenen_US
dc.relationSUG 002479-00001en_US
dc.relation.ispartofScience Advancesen_US
dc.rights© 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).en_US
dc.subjectEngineering::Mechanical engineeringen_US
dc.titleFrequency-dependent transition in power-law rheological behavior of living cellsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.organizationInstitute of High Performance Computing, A*STARen_US
dc.identifier.doi10.1126/sciadv.abn6093-
dc.description.versionPublished versionen_US
dc.identifier.pmid35522746-
dc.identifier.scopus2-s2.0-85129936839-
dc.identifier.issue18en_US
dc.identifier.volume8en_US
dc.identifier.spageeabn6093en_US
dc.subject.keywordsCellsen_US
dc.subject.keywordsComputer Aided Diagnosisen_US
dc.description.acknowledgementG.-K.X. acknowledges the National Natural Science Foundation of China (grant nos. 12122210 and 12072252), and H.G. acknowledges the research start-up grant (002479-00001) from Nanyang Technological University and the Agency for Science, Technology and Research (A*STAR).en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:MAE Journal Articles
Files in This Item:
File Description SizeFormat 
sciadv.abn6093.pdf649.9 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

18
Updated on Feb 22, 2024

Web of ScienceTM
Citations 20

12
Updated on Oct 29, 2023

Page view(s)

81
Updated on Mar 2, 2024

Download(s) 50

75
Updated on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.