Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/160951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWan, Renjieen_US
dc.contributor.authorShi, Boxinen_US
dc.contributor.authorLi, Haoliangen_US
dc.contributor.authorDuan, Ling-Yuen_US
dc.contributor.authorKot, Alex Chichungen_US
dc.date.accessioned2022-08-08T07:31:12Z-
dc.date.available2022-08-08T07:31:12Z-
dc.date.issued2021-
dc.identifier.citationWan, R., Shi, B., Li, H., Duan, L. & Kot, A. C. (2021). Face image reflection removal. International Journal of Computer Vision, 129(2), 385-399. https://dx.doi.org/10.1007/s11263-020-01372-5en_US
dc.identifier.issn0920-5691en_US
dc.identifier.urihttps://hdl.handle.net/10356/160951-
dc.description.abstractFace images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflection removal problem. We recover the important facial structures by incorporating inpainting ideas into a guided reflection removal framework, which takes two images as the input and considers various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition.en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Computer Visionen_US
dc.rights© 2020 Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleFace image reflection removalen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.researchRapid-Rich Object Search (ROSE) Laben_US
dc.identifier.doi10.1007/s11263-020-01372-5-
dc.identifier.scopus2-s2.0-85091063871-
dc.identifier.issue2en_US
dc.identifier.volume129en_US
dc.identifier.spage385en_US
dc.identifier.epage399en_US
dc.subject.keywordsReflection Removalen_US
dc.subject.keywordsDeep Learningen_US
dc.description.acknowledgementThe work is supported in part by the Wallenberg-NTU Presidential Postdoctoral Fellowship, the NTU-PKU Joint Research Institute, a collaboration between the Nanyang Technological University and Peking University that is sponsored by a donation from the Ng Teng Fong Charitable Foundation, and the Science and Technology Foundation of Guangzhou Huangpu Development District under Grant 201902010028. This research is in part supported by the National Natural Science Foundation of China under Grants 61872012 and U1611461, and Beijing Academy of Artificial Intelligence (BAAI).en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 20

11
Updated on Dec 4, 2023

Web of ScienceTM
Citations 20

7
Updated on Oct 31, 2023

Page view(s)

72
Updated on Dec 6, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.