Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/161096
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCong, Longqingen_US
dc.contributor.authorSingh, Ranjanen_US
dc.date.accessioned2022-08-15T07:30:13Z-
dc.date.available2022-08-15T07:30:13Z-
dc.date.issued2020-
dc.identifier.citationCong, L. & Singh, R. (2020). Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Advanced Materials, 32(28), 2001418-. https://dx.doi.org/10.1002/adma.202001418en_US
dc.identifier.issn0935-9648en_US
dc.identifier.urihttps://hdl.handle.net/10356/161096-
dc.description.abstractNext-generation devices for low-latency and seamless communication are envisioned to revolutionize information processing, which would directly impact human lives, technologies, and societies. The ever-increasing demand for wireless data traffic can be fulfilled by the terahertz band, which has received tremendous attention as the final frontier of the radio spectrum. However, attenuation due to atmospheric humidity and free-space path loss significantly limits terahertz signal propagation. High-gain antennas with directional radiation and reconfigurable beam steering are indispensable for loss compensation and terahertz signal processing, which are associated with spatial and temporal dimensions, respectively. Here, experimental demonstration of a spatiotemporal dielectric metasurface for unidirectional propagation and ultrafast spatial beam steering of terahertz waves is shown. The spatial dimension of the metasurface provides a solution to eliminate backscattering of collimated unidirectional propagation of the terahertz wave with steerable directionality. Temporal modulation of the spatial optical properties enables ultrafast reconfigurable beam steering. Silicon-based spatiotemporal devices amalgamate the rich physics of metasurfaces and technologies that are promising for overcoming the bottlenecks of future terahertz communication, such as high-speed and secure wireless data transmission, beamforming and ultrafast data processing.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationG191/17en_US
dc.relationMOE2017-T2-1-110en_US
dc.relationMOE2016-T3-1-006(S)en_US
dc.relationA18A5b0056en_US
dc.relation.ispartofAdvanced Materialsen_US
dc.rights© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.en_US
dc.subjectScience::Physicsen_US
dc.titleSpatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beamsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.researchThe Photonics Instituteen_US
dc.contributor.researchCentre for Disruptive Photonic Technologies (CDPT)en_US
dc.identifier.doi10.1002/adma.202001418-
dc.identifier.pmid32468602-
dc.identifier.scopus2-s2.0-85085473302-
dc.identifier.issue28en_US
dc.identifier.volume32en_US
dc.identifier.spage2001418en_US
dc.subject.keywordsDielectric Metamaterialsen_US
dc.subject.keywordsSpatiotemporal Metasurfacesen_US
dc.description.acknowledgementThe authors acknowledge research funding support from the Ministry of Education, Singapore (AcRF Tier 1, Grant RG191/17, MOE2017-T2-1-110, and MOE2016-T3-1-006(S)) and the funding support from Advanced Manufacturing and Engineering (AME) Programmatic grant (A18A5b0056) by Agency for Science, Technology and Research (A*STAR).en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 5

66
Updated on Feb 25, 2024

Web of ScienceTM
Citations 5

60
Updated on Oct 24, 2023

Page view(s)

91
Updated on Feb 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.