Please use this identifier to cite or link to this item:
Title: Experimental study on local scour around a forced vibrating pipeline in unidirectional flows
Authors: Zhang, Zhimeng
Chiew, Yee-Meng
Ji, Chunning
Keywords: Engineering::Civil engineering
Issue Date: 2022
Source: Zhang, Z., Chiew, Y. & Ji, C. (2022). Experimental study on local scour around a forced vibrating pipeline in unidirectional flows. Coastal Engineering, 176, 104162-.
Journal: Coastal Engineering
Abstract: The interaction between a forced vibrating pipeline and an erodible seabed in unidirectional flows is experimentally investigated. The experiments were conducted under clear-water scour conditions with a water depth of 0.3m and averaged approach velocity of 0.261 m/s. The pipeline model with a diameter (D) of 3.5 cm, was subjected to a vertical sinusoidal motion of varying amplitudes (A0 = 2∼6 cm) and frequencies (f0 = 0.1–0.6Hz). The initial gap (G0) between the lower pipe surface and the undisturbed flatbed level was fixed at 1D. The results show that the maximum scour depth increases significantly with both vibration amplitude and frequency, with the former having a more dominant influence. However, frequency tends to exacerbate the scour hole development more in the early scour stage. Distinct scour mechanisms are observed based on the different combinations of vibration amplitude and frequency. In the high A0 conditions (A0 > G0), the combined effect of pounding (when the pipe hits the seabed) and piston actions (rising and falling of the pipe) during the pipe descending period dominates the earlier stages of scouring, and the pick-up of sediment particles during its rising period controls the subsequent scour process. In the low A0 conditions (A0 < G0) when pounding does not occur, vortex shedding during the pipe-falling stage controls the development of scour hole when the frequency is low. When the frequency is high, however, the flow field associated with the pipe-rising period dominates the scour development. Different empirical formulas for the prediction of the maximum scour depth and width are proposed and compared in the present study.
ISSN: 0378-3839
DOI: 10.1016/j.coastaleng.2022.104162
Rights: © 2022 Elsevier B.V. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

Page view(s)

Updated on Dec 3, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.