Please use this identifier to cite or link to this item:
Title: The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis
Authors: Yap, Wei Sheng
Shyu Jr., Peter
Gaspar, Maria Laura
Jesch, Stephen A.
Marvalim, Charlie
Prinz, William A.
Henry, Susan A.
Thibault, Guillaume
Keywords: Science::Medicine
Issue Date: 2020
Source: Yap, W. S., Shyu Jr., P., Gaspar, M. L., Jesch, S. A., Marvalim, C., Prinz, W. A., Henry, S. A. & Thibault, G. (2020). The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. Journal of Cell Science, 133(21), jcs248526-.
Project: NRF2018NRFNSFC003SB-006 
Journal: Journal of Cell Science 
Abstract: Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
ISSN: 0021-9533
DOI: 10.1242/jcs.248526
DOI (Related Dataset): 10.21979/N9/I7MXVP
Schools: School of Biological Sciences 
Organisations: Institute of Molecular and Cell Biology, A*STAR
Rights: © 2020 The Author(s). All rights reserved. This paper was published by The Company of Biologists Ltd in Journal of Cell Science and is made available with permission of The Author(s).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles

Files in This Item:
File Description SizeFormat 
jcs248526.pdf2.59 MBAdobe PDFThumbnail

Citations 20

Updated on Apr 16, 2024

Web of ScienceTM
Citations 20

Updated on Oct 28, 2023

Page view(s)

Updated on Apr 23, 2024


Updated on Apr 23, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.