Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/162107
Title: Equivalent circuit modeling and analysis of aerodynamic vortex-induced piezoelectric energy harvesting
Authors: Jia, Jinda
Shan, Xiaobiao
Zhang, Xingxu
Xie, Tao
Yang, Yaowen
Keywords: Engineering::Civil engineering
Issue Date: 2022
Source: Jia, J., Shan, X., Zhang, X., Xie, T. & Yang, Y. (2022). Equivalent circuit modeling and analysis of aerodynamic vortex-induced piezoelectric energy harvesting. Smart Materials and Structures, 31(3), 035009-. https://dx.doi.org/10.1088/1361-665X/ac4ab4
Journal: Smart Materials and Structures
Abstract: Low-speed wind energy has potential to be captured for powering micro-electro-mechanical systems or sensors in remote inaccessible place by piezoelectric energy harvesting from vortex-induced vibration. Conventional theory or finite-element analysis mostly considers a simple pure resistance as interface circuit because of the complex fluid-solid-electricity coupling in aeroelastic piezoelectric energy harvesting. However, the output alternating voltage should be rectified to direct voltage to be used in practical occasions, where the theoretical analysis and finite-element analysis for complex interface may be cumbersome or difficult. To solve this problem, this paper presents an equivalent circuit modeling (ECM) method to analyze the performance of vortex-induced energy harvesters. Firstly, the equivalent analogies from the mechanical and fluid domain to the electrical domain are built. The linear mechanical and fluid elements are represented by standard electrical elements. The nonlinear elements are represented by electrical non-standard user-defined components. Secondly, the total fluid-solid-electricity coupled mathematical equations of the harvesting system are transformed into electrical formulations based on the equivalent analogies. Finally, the entire ECM is established in a circuit simulation software to perform system-level transient analyses. The simulation results from ECM have good agreement with the experimental measurements. Further parametric studies are carried out to assess the influences of wind speed and resistance on the output power of the alternating circuit interface and the capacitor filter circuit. At wind speed of 1.2 m s-1, the energy harvester could generate an output power of 81.71 μW with the capacitor filter circuit and 114.64 μW with the alternating circuit interface. The filter capacitance is further studied to ascertain its effects on the stability of output and the settling time.
URI: https://hdl.handle.net/10356/162107
ISSN: 0964-1726
DOI: 10.1088/1361-665X/ac4ab4
Rights: © 2022 IOP Publishing Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Nov 29, 2022

Page view(s)

5
Updated on Dec 3, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.