Please use this identifier to cite or link to this item:
Title: Enantiomeric separation of racemic mixtures using chiral-selective and organic-solvent-resistant thin-film composite membranes
Authors: Ong, Chi Siang
Oor, Jia Zheng
Tan, Jonathan Shiliang
Chew, Jia Wei
Keywords: Engineering::Chemical engineering
Issue Date: 2022
Source: Ong, C. S., Oor, J. Z., Tan, J. S. & Chew, J. W. (2022). Enantiomeric separation of racemic mixtures using chiral-selective and organic-solvent-resistant thin-film composite membranes. ACS Applied Materials & Interfaces, 14(8), 10875-10885.
Project: A20B3a0070 
Journal: ACS Applied Materials & Interfaces 
Abstract: Membrane-based chiral separation has emerged as a promising method for the efficient separation of chiral molecules. Ideally, the membranes should be able to achieve good enantioselectivity, while maintaining high stability in harsh solvents. However, engineering membranes for chiral molecular separation in harsh organic solvent environments is still a big challenge. In this study, we fabricated a novel thin-film composite nanofiltration membrane composed of (2-hydroxypropyl)-beta-cyclodextrin (HP-β-CD) as the chiral selector for the enantiomeric separation of racemic 1-phenylethanol chiral compounds in organic solvents. The fabricated membrane achieved 60-80% enantioselectivity of R-phenylethanol over S-phenylethanol in nonpolar n-hexane. It was found that HP-β-CD played a critical role in the enantioselective performance, as the membrane without HP-β-CD showed no chiral selectivity. Molecular docking calculations substantiate the experiments by showing that the average free binding energy of S-phenylethanol with HP-β-CD is stronger than that of R-phenylethanol, indicating that the complex of S-phenylethanol with HP-β-CD has a higher thermodynamic stability and greater interaction. Furthermore, the crosslinked network between HP-β-CD and the polyamide layer conferred the membrane with solvent stability in nonpolar solvents. Moreover, this new membrane exhibited good solvent permeance and a molecular weight cutoff of around 650 g mol-1.
ISSN: 1944-8244
DOI: 10.1021/acsami.1c25175
Schools: School of Chemical and Biomedical Engineering 
Research Centres: Singapore Membrane Technology Centre 
Nanyang Environment and Water Research Institute 
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © 2022 American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:NEWRI Journal Articles
SCBE Journal Articles

Citations 20

Updated on Feb 21, 2024

Web of ScienceTM
Citations 20

Updated on Oct 23, 2023

Page view(s)

Updated on Feb 27, 2024

Download(s) 50

Updated on Feb 27, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.