Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/162151
Title: Direct laser deposition of 304 stainless steel for surface enhancement of ASTM A36 steel
Authors: Zhang, Xinyi
Keywords: Engineering::Mechanical engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Zhang, X. (2022). Direct laser deposition of 304 stainless steel for surface enhancement of ASTM A36 steel. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/162151
Abstract: Direct laser deposition technology has the advantages of rapid prototyping, flexibility, and controllability when compared to traditional technologies. This technique uses the laser as a heat source and can process many difficult-to-process materials. DLD technology thus has a significant impact on the fields of surface strengthening and restoration. In this work, direct laser deposition of 304L stainless steel for surface strengthening of ASTM A36 steel was investigated. Compared with A36 steel, 304L stainless steel has better corrosion resistance and oxidation resistance. Therefore, cladding 304L stainless steel on ASTM A36 steel can enhance the surface properties of the substrate, and this study has certain guiding value for laser cladding of other materials. This study was mainly divided into the following steps: First, different DLD process parameters were used to deposit 304L stainless steel powder on the surface of A36 steel. The second step is to prepare the metallographic sample. Third, examine the sample's morphology and microstructure to ascertain its microhardness. Finally, it was determined how different parameters affected the morphology, microstructure, and microhardness of the cladding layer. The results demonstrate that varied laser power, powder flow rate, and laser scanning rate have an impact on the height, width, and depth of the cladding layer, and that the cladding layer's microstructure is clearly discernible. The microhardness variation law of the cladding layer was then examined in relation to the microstructure traits and process parameters of the cladding layer.
URI: https://hdl.handle.net/10356/162151
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
Final dissertation-signed.pdf
  Restricted Access
Direct Laser Deposition of 304 Stainless Steel for Surface Enhancement of ASTM A36 Steel1.8 MBAdobe PDFView/Open

Page view(s)

101
Updated on Sep 27, 2023

Download(s)

12
Updated on Sep 27, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.