Please use this identifier to cite or link to this item:
Title: Effect of aluminum on the friction and wear behavior of AlₓCrFeNi medium-entropy alloys
Authors: Qiao, Ling
Ramanujan, Raju V.
Zhu, Jingchuan
Keywords: Engineering::Materials
Issue Date: 2022
Source: Qiao, L., Ramanujan, R. V. & Zhu, J. (2022). Effect of aluminum on the friction and wear behavior of AlₓCrFeNi medium-entropy alloys. Advanced Engineering Materials, 24(7), 2101475-.
Project: A1898b0043
Journal: Advanced Engineering Materials
Abstract: Several high-entropy alloys (HEAs) and medium-entropy alloys (MEAs) are promising for wear applications due to their excellent strength and fracture toughness. Herein, a series of (Formula presented.) MEAs (x = 0.3, 0.5, 0.8, 1.0, 1.2) are prepared by a vacuum arc-melting techniques. The effects of Al content on the crystal structures and mechanical properties are evaluated in terms of hardness and wear resistance. With an increase in Al content, the microstructure changes from face-centered cubic (FCC) + body-centered cubic (BCC)/B2 phases to B2/BCC phases. A higher volume fraction of the BCC phase with increasing Al content favors spinodal decomposition. The Vickers microhardness increases from 345HV (x = 0.3) to 486HV (x = 1.2) with increasing Al content; a nanohardness size effect is revealed by nanoindentation tests. For high Al contents (x = 1.2), the coefficient of friction and wear rate reach the lowest value when the worn surface is smooth with smaller debris, indicating improved wear resistance. Furthermore, this series of MEAs exhibits wear related to abrasion, adhesion, and oxidation; the dominant wear mechanism is influenced by the Al content.
ISSN: 1438-1656
DOI: 10.1002/adem.202101475
Rights: © 2022 Wiley-VCH GmbH. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Citations 50

Updated on Nov 26, 2022

Web of ScienceTM
Citations 50

Updated on Nov 24, 2022

Page view(s)

Updated on Nov 30, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.