Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/162264
Title: Efficient and selective CO₂ reduction to formate on Pd-doped Pb₃ (CO₃)₂ (OH)₂: dynamic catalyst reconstruction and accelerated CO₂ protonation
Authors: Huang, Wenjing
Wang, Yijin
Liu, Jiawei
Wang, Yu
Liu, Daobin
Dong, Jingfeng
Jia, Ning
Yang, Lan
Liu, Chuntai
Liu, Zheng
Liu, Bin
Yan, Qingyu
Keywords: Engineering::Chemical engineering
Engineering::Materials
Issue Date: 2022
Source: Huang, W., Wang, Y., Liu, J., Wang, Y., Liu, D., Dong, J., Jia, N., Yang, L., Liu, C., Liu, Z., Liu, B. & Yan, Q. (2022). Efficient and selective CO₂ reduction to formate on Pd-doped Pb₃ (CO₃)₂ (OH)₂ : dynamic catalyst reconstruction and accelerated CO₂ protonation. Small, 18(16), e2107885-. https://dx.doi.org/10.1002/smll.202107885
Project: 2020-T1-001-031 
NRF2016NRF-NRFI001-22
Journal: Small 
Abstract: Exploring catalyst reconstruction under the electrochemical condition is critical to understanding the catalyst structure-activity relationship as well as to design effective electrocatalysts. Herein, a PbF2 nanocluster is synthesized and its self-reconstruction under the CO2 reduction condition is investigated. F- leaching, CO2 -saturated environment, and application of a cathodic potential induce self-reconstruction of PbF2 to Pb3 (CO3 )2 (OH)2 , which effectively catalyze the CO2 reduction to formate. The in situ formed Pb3 (CO3 )2 (OH)2 discloses >80% formate Faradaic efficiencies (FEs) across a broad range of potentials and achieves a maximum formate FE of ≈90.1% at -1.2 V versus reversible hydrogen electrode (RHE). Kinetic studies show that the CO2 reduction reaction (CO2 RR) on the Pb3 (CO3 )2 (OH)2 is rate-limited at the CO2 protonation step, in which proton is supplied by bicarbonate (HCO3 - ) in the electrolyte. To improve the CO2 RR kinetics, the Pb3 (CO3 )2 (OH)2 is further doped with Pd (4 wt%) to enhance its HCO3 - adsorption, which leads to accelerated protonation of CO2 . Therefore, the Pd-Pb3 (CO3 )2 (OH)2 (4 wt%) reveals higher formate FEs of >90% from -0.8 to -1.2 V versus RHE and reaches a maximum formate FE of 96.5% at -1.2 V versus RHE with a current density of ≈13 mA cm-2 .
URI: https://hdl.handle.net/10356/162264
ISSN: 1613-6810
DOI: 10.1002/smll.202107885
Rights: © 2022 Wiley-VCH GmbH. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles
SCBE Journal Articles

SCOPUSTM   
Citations 50

3
Updated on Nov 25, 2022

Web of ScienceTM
Citations 50

3
Updated on Nov 25, 2022

Page view(s)

24
Updated on Nov 25, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.