Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoyle, Stephenen_US
dc.contributor.authorDoss, Bryanten_US
dc.contributor.authorHuo, Yuchengen_US
dc.contributor.authorSingh, Hemang Rajen_US
dc.contributor.authorQuinn, Daviden_US
dc.contributor.authorHsia, K. Jimmyen_US
dc.contributor.authorLeDuc, Philip R.en_US
dc.identifier.citationCoyle, S., Doss, B., Huo, Y., Singh, H. R., Quinn, D., Hsia, K. J. & LeDuc, P. R. (2022). Cell alignment modulated by surface nano-topography - roles of cell-matrix and cell-cell interactions. Acta Biomaterialia, 142, 149-159.
dc.description.abstractThe propensity of cells to align in particular directions is relevant to a number of areas, including tissue engineering and biohybrid robotics. Cell alignment is modulated through various extracellular conditions including surface topographies, mechanical cues from cell-matrix interactions, and cell-cell interactions. Understanding of these conditions provides guidance for desirable cellular structure constructions. In this study, we examine the roles of surface topographies and cell-cell interactions in inducing cell alignment. We employed wavy surface topographies at the nanometer scale as a model extracellular environment for cell culture. The results show that, within a certain range of wavelengths and amplitudes of the surface topographies, cell alignment is dependent on cell confluency. This dependence on both topology and confluency suggests interplay between cell-cell and cell-matrix interactions in inducing cell alignment. Images of sparsely distributed and confluent cells also demonstrated clear differences in the structures of their focal adhesion complexes. To understand this effect, we introduced anti-N-cadherin to cell culture to inhibit cell-cell interactions. The results show that, when anti-N-cadherin was applied, cells on wavy surfaces required greater confluency to achieve the same alignment compared to that in the absence of anti-N-cadherin. The understanding of the cell alignment mechanisms will be important in numerous potential applications such as scaffold design, tissue repair, and development of biohybrid robotic systems. STATEMENT OF SIGNIFICANCE: Cell alignment plays a critical role in numerous biological functions. Advances in tissue engineering utilizes cell alignment to restore, maintain, or even replace different types of biological tissues. The clinical impact that tissue engineering has made is facilitated by advancements in the understanding of interactions between scaffolds, biological factors, and cells. This work further elucidates the role of cell-cell interactions in promoting the organization of biological tissues.en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.relation.ispartofActa Biomaterialiaen_US
dc.rightsCrown Copyright © 2022 Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license (
dc.titleCell alignment modulated by surface nano-topography - roles of cell-matrix and cell-cell interactionsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.description.versionPublished versionen_US
dc.description.acknowledgementThis work was supported in part by the National Institute of Health (R01AG06100501A1), Air Force Office of Scientific Research (FA9550–18–1-0262), National Science Foundation (CMMI-1946456), Office of Naval Research (N00014-17–1–2566), and the Pennsylvania Department of Health (SAP4100077084). BD and KJH acknowledge partial financial support by the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01HD086325). KJH, YH and HRS would like to acknowledge the financial support from Nanyang Technological University (grant M4082428.050).en_US
item.fulltextWith Fulltext-
Appears in Collections:MAE Journal Articles
SCBE Journal Articles
Files in This Item:
File Description SizeFormat 
1-s2.0-S1742706122000745-main.pdf3.35 MBAdobe PDFThumbnail

Citations 20

Updated on Feb 28, 2024

Web of ScienceTM
Citations 20

Updated on Oct 28, 2023

Page view(s)

Updated on Feb 27, 2024

Download(s) 50

Updated on Feb 27, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.