Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/162324
Title: A plasmonic supramolecular nanohybrid as a contrast agent for site-selective computed tomography imaging of tumor
Authors: Bindra, Anivind Kaur
Sreejith, Sivaramapanicker
Prasad, Rajendra
Gorain, Mahadeo
Thomas, Rijil
Jana, Deblin
Nai, Mui Hoon
Wang, Dongdong
Tharayil, Abhimanyu
Kundu, Gopal C.
Srivastava, Rohit
Thomas, Sabu
Lim, Chwee Teck
Zhao, Yanli
Keywords: Science::Chemistry
Issue Date: 2022
Source: Bindra, A. K., Sreejith, S., Prasad, R., Gorain, M., Thomas, R., Jana, D., Nai, M. H., Wang, D., Tharayil, A., Kundu, G. C., Srivastava, R., Thomas, S., Lim, C. T. & Zhao, Y. (2022). A plasmonic supramolecular nanohybrid as a contrast agent for site-selective computed tomography imaging of tumor. Advanced Functional Materials, 32(12), 2110575-. https://dx.doi.org/10.1002/adfm.202110575
Project: A20E5c0081 
NRF-NRFI2018-03 
Journal: Advanced Functional Materials 
Abstract: Design of organic–inorganic hybrids by anchoring of plasmonic materials such as gold nanoparticles (AuNPs) on self-assembled organic substrates is useful but challenging. Herein, in situ anchoring of plasmonic nanoparticles on the surface of a designed spherical assembly via Au-S bond formation is presented. First, a thiol tailed pyrene derivative (2) undergoes solvent dependent self-assembly, transforming into an organic spherical aggregate (2agg). The thiol (-SH) rich surface of the organic assembly allows cumulative anchoring of AuNPs on the surface to form an organic–inorganic hybrid (Au@2agg). Further coating of biocompatible polyethylene glycol (PEG) leads to the construction of the final multicomponent system (PEG-Au@2agg) exhibiting morphological and spectroscopic features. The potential of PEG-Au@2agg as a bioprobe and a contrast agent is investigated by X-ray computed tomography (CT) experiments in vivo. High X-ray attenuation of directly anchored AuNP clusters on the surface of this supramolecular nanohybrids enhances the X-ray CT contrast and allows tracing of site-selective accumulation in mouse 4T1 breast tumor. Thus, this approach of designing organic–inorganic nanohybrids paves the way for developing future intelligent multifunctional nanosystems capable of cancer detection and imaging.
URI: https://hdl.handle.net/10356/162324
ISSN: 1616-301X
DOI: 10.1002/adfm.202110575
Schools: School of Physical and Mathematical Sciences 
School of Electrical and Electronic Engineering 
Rights: © 2021 Wiley-VCH GmbH. All rights reserved. This is the peer reviewed version of the following article: Bindra, A. K., Sreejith, S., Prasad, R., Gorain, M., Thomas, R., Jana, D., Nai, M. H., Wang, D., Tharayil, A., Kundu, G. C., Srivastava, R., Thomas, S., Lim, C. T. & Zhao, Y. (2022). A plasmonic supramolecular nanohybrid as a contrast agent for site-selective computed tomography imaging of tumor. Advanced Functional Materials, 32(12), 2110575-, which has been published in final form at https://dx.doi.org/10.1002/adfm.202110575. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles
SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
Manuscript.pdf4.85 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

7
Updated on Feb 18, 2024

Web of ScienceTM
Citations 50

4
Updated on Oct 31, 2023

Page view(s)

91
Updated on Feb 26, 2024

Download(s) 50

45
Updated on Feb 26, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.