Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYin, Jianboen_US
dc.contributor.authorTan, Chengen_US
dc.contributor.authorBarcons-Ruiz, Daviden_US
dc.contributor.authorTorre, Iacopoen_US
dc.contributor.authorWatanabe, Kenjien_US
dc.contributor.authorTaniguchi, Takashien_US
dc.contributor.authorSong, Justin Chien Wenen_US
dc.contributor.authorHone, Jamesen_US
dc.contributor.authorKoppens, Frank H. L.en_US
dc.identifier.citationYin, J., Tan, C., Barcons-Ruiz, D., Torre, I., Watanabe, K., Taniguchi, T., Song, J. C. W., Hone, J. & Koppens, F. H. L. (2022). Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science, 375(6587), 1398-1402.
dc.description.abstractBerry curvature is analogous to magnetic field but in momentum space and is commonly present in materials with nontrivial quantum geometry. It endows Bloch electrons with transverse anomalous velocities to produce Hall-like currents even in the absence of a magnetic field. We report the direct observation of in situ tunable valley-selective Hall effect (VSHE), where inversion symmetry, and thus the geometric phase of electrons, is controllable by an out-of-plane electric field. We use high-quality bilayer graphene with an intrinsic and tunable bandgap, illuminated by circularly polarized midinfrared light, and confirm that the observed Hall voltage arises from an optically induced valley population. Compared with molybdenum disulfide (MoS2), we find orders of magnitude larger VSHE, attributed to the inverse scaling of the Berry curvature with bandgap. By monitoring the valley-selective Hall conductivity, we study the Berry curvature's evolution with bandgap. This in situ manipulation of VSHE paves the way for topological and quantum geometric optoelectronic devices, such as more robust switches and detectors.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.rights© 2022 American Association for the Advancement of Science. All rights reserved.en_US
dc.titleTunable and giant valley-selective Hall effect in gapped bilayer grapheneen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.subject.keywordsValley-Selective Hall Effecten_US
dc.subject.keywordsBilayer Membraneen_US
dc.description.acknowledgementThis work is supported by European Union’s Horizon 2020 Research and Innovation Programme under grant agreement ref. 881603 (Graphene Flagship Core Project 3) (F.H.L.K.); European Research Council (ERC) TOPONANOP under grant agreement ref. 726001 (F.H.L.K.); the government of Spain [PID2019-106875GB-I00; FJC2018-037098-I; Severo Ochoa CEX2019-000910-S(MCIN/ AEI/10.13039/501100011033)] (F.H.L.K.); Fundació Cellex, Fundació Mir-Puig (F.H.L.K.); Generalitat de Catalunya (CERCA,AGAUR, SGR 1656) (F.H.L.K.); European Union’s Horizon 2020 Programme under the Marie Skłodowska-Curie grant agreements VHPC ref. 747927 (J.Y.); National Natural Science Foundation of China (grant refs. 52072043 and T2188101) (J.Y.); National Key R & D Program of China under grant ref. 2020YFA0308900(J.Y.); National Science Foundation program for Emerging Frontiers in Research and Innovation (EFRI-1741660) (C.T. and J.H.); the Ministry of Education Singapore, under its MOEAcRF Tier 3 Award MOE2018-T3-1-002 (J.C.W.S.); and a Nanyang Technological University start-up grant (NTU-SUG)(J.C.W.S.).en_US
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

Citations 50

Updated on Jan 23, 2023

Web of ScienceTM
Citations 50

Updated on Jan 22, 2023

Page view(s)

Updated on Jan 27, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.