Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/162605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Weien_US
dc.contributor.authorDong, Miaomiaoen_US
dc.contributor.authorKim, Taejoonen_US
dc.date.accessioned2022-11-01T02:25:02Z-
dc.date.available2022-11-01T02:25:02Z-
dc.date.issued2022-
dc.identifier.citationZhang, W., Dong, M. & Kim, T. (2022). MMV-based sequential AoA and AoD estimation for millimeter wave MIMO channels. IEEE Transactions On Communications, 70(6), 4063-4077. https://dx.doi.org/10.1109/TCOMM.2022.3168886en_US
dc.identifier.issn0090-6778en_US
dc.identifier.urihttps://hdl.handle.net/10356/162605-
dc.description.abstractThe fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Communicationsen_US
dc.rights© 2022 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleMMV-based sequential AoA and AoD estimation for millimeter wave MIMO channelsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TCOMM.2022.3168886-
dc.identifier.scopus2-s2.0-85128677002-
dc.identifier.issue6en_US
dc.identifier.volume70en_US
dc.identifier.spage4063en_US
dc.identifier.epage4077en_US
dc.subject.keywordsMillimeter Wave Communicationsen_US
dc.subject.keywordsCompressed Sensingen_US
dc.description.acknowledgementThe work of Taejoon Kim was supported in part by the National Science Foundation (NSF) under Grant CNS1955561 and in part by the Office of Naval Research (ONR) under Grant N00014-21-1-2472.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

Page view(s)

16
Updated on Jan 28, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.