Please use this identifier to cite or link to this item:
Title: Semitransparent perovskite solar cells with > 13% efficiency and 27% transperancy using plasmonic Au nanorods
Authors: Lie, Stener
Bruno, Annalisa
Wong, Lydia Helena
Etgar, Lioz
Keywords: Engineering::Materials
Issue Date: 2022
Source: Lie, S., Bruno, A., Wong, L. H. & Etgar, L. (2022). Semitransparent perovskite solar cells with > 13% efficiency and 27% transperancy using plasmonic Au nanorods. ACS Applied Materials and Interfaces, 14(9), 11339-11349.
Project: S18-1176- SCRP
Journal: ACS Applied Materials and Interfaces 
Abstract: Semitransparent hybrid perovskites open up applications in windows and building-integrated photovoltaics. One way to achieve semitransparency is by thinning the perovskite film, which has several benefits such as cost efficiency and reduction of lead. However, this will result in a reduced light absorbance; therefore, to compromise this loss, it is possible to incorporate plasmonic metal nanostructures, which can trap incident light and locally amplify the electromagnetic field around the resonance peaks. Here, Au nanorods (NRs), which are not detrimental for the perovskite and whose resonance peak overlaps with the perovskite band gap, are deposited on top of a thin (∼200 nm) semitransparent perovskite film. These semitransparent perovskite solar cells with 27% average visible transparency show enhancement in the open-circuit voltage (Voc) and fill factor, demonstrating 13.7% efficiency (improved by ∼6% compared to reference cells). Space-charge limited current, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses shed more light on the trap density, nonradiative recombination, and defect density in these Au NR post-treated semitransparent perovskite solar cells. Furthermore, Au NR implementation enhances the stability of the solar cell under ambient conditions. These findings show the ability to compensate for the light harvesting of semitransparent perovskites using the plasmonic effect.
ISSN: 1944-8244
DOI: 10.1021/acsami.1c22748
Rights: © 2022 American Chemical Society. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:ERI@N Journal Articles
MSE Journal Articles

Citations 50

Updated on Dec 1, 2022

Web of ScienceTM
Citations 50

Updated on Dec 2, 2022

Page view(s)

Updated on Dec 5, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.