Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163292
Title: Robust day and night object detection based on heterogeneous sensors and information fusion
Authors: Yun, Yanpu
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Yun, Y. (2022). Robust day and night object detection based on heterogeneous sensors and information fusion. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/163292
Abstract: Object detection and localization is now an important component in autonomous driving-related applications, in which the technology based on traditional RGB cameras has become increasingly mature. However, the detection ability of RGB cameras is greatly affected by lighting conditions, such as in a dim environment at night, the information available in RGB images may not be rich enough. We find that thermal infrared images and 3D point clouds from LiDAR can make up for the lack of light and capture more information missing from visible light images. Therefore, we propose a method to fuse RGB images, thermal images and 3D point clouds to facilitate accurate detection in both day and night. Experimental results show that this fusion method improves the detection performance.
URI: https://hdl.handle.net/10356/163292
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
Final_Dissertation_Yun_Yanpu.pdf
  Restricted Access
15.81 MBAdobe PDFView/Open

Page view(s)

128
Updated on Sep 30, 2023

Download(s)

3
Updated on Sep 30, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.