Please use this identifier to cite or link to this item:
Title: Rollout approach to sensor scheduling for remote state estimation under integrity attack
Authors: Liu, Hanxiao
Li, Yuchao
Johansson, Karl Henrik
Mårtensson, Jonas
Xie, Lihua
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2022
Source: Liu, H., Li, Y., Johansson, K. H., Mårtensson, J. & Xie, L. (2022). Rollout approach to sensor scheduling for remote state estimation under integrity attack. Automatica, 144, 110473-.
Journal: Automatica
Abstract: We consider the sensor scheduling problem for remote state estimation under integrity attacks. We seek to optimize a trade-off between the energy consumption of communications and the state estimation error covariance when the acknowledgment (ACK) information, sent by the remote estimator to the local sensor, is compromised. The sensor scheduling problem is formulated as an infinite horizon discounted optimal control problem with infinite states. We first analyze the underlying Markov decision process (MDP) and show that the optimal scheduling without ACK attack is of the threshold type. Thus, we can simplify the problem by replacing the original state space with a finite state space. For the simplified MDP, when the ACK is under attack, the problem is modeled as a partially observable Markov decision process (POMDP). We analyze the induced MDP that uses a belief vector as its state for the POMDP. We investigate the properties of the exact optimal solution via contractive models and show that the threshold type of solution for the POMDP cannot be readily obtained. A suboptimal solution is then obtained via a rollout approach, which is a prominent class of reinforcement learning (RL) methods based on approximation in value space. We present two variants of rollout and provide performance bounds of those variants. Finally, numerical examples are used to demonstrate the effectiveness of the proposed rollout methods by comparing them with a finite history window approach that is widely used in RL for POMDP.
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2022.110473
Schools: School of Electrical and Electronic Engineering 
Rights: © 2022 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Citations 50

Updated on Feb 24, 2024

Web of ScienceTM
Citations 50

Updated on Oct 26, 2023

Page view(s)

Updated on Feb 27, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.