Please use this identifier to cite or link to this item:
Title: Characterization of neural crest stem cells derived from human induced pluripotent stem cells.
Authors: Ling, Su Fung.
Keywords: DRNTU::Science::Biological sciences::Cytology
Issue Date: 2009
Abstract: Neural crest stem cells (NCSCs) play crucial roles in early embryonic development of vertebrates. Defects in human neural crest (NC) development cause severe disorders, which lack therapeutic intervention. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells provide a potential source of patient-specific stem cells for modelling diseases and regenerative medicine. The present study aims to identify putative NCSCs in neuroprogenitor cells derived from hiPSCs and human embryonic stem cells (hESCs) following noggin-induced neurodifferentiation, and analyze for NCSCs gene marker expressions and differentiation potentials towards multiple NC lineages. High populations of p75- or HNK-1-expressing NCSCs, and significant upregulation of an array of NCSCs gene markers were shown in the hiPSCs- and hESCs-derived neuroprogenitors, with downregulation of pluripotency stem cell markers, as compared to the undifferentiated status. Lineage directed differentiation of the neuroprogenitors successfully yielded neuronal, glial, smooth muscle and chondrogenic cells, derived from hiPSCs and hESCs. Furthermore, the hiPSCs-derived neuroprogenitors showed higher NCSCs populations with increased gene marker expressions, resulting in evidently greater differentiation potential, compared to that of hESCs. This new finding creates greater hope and opportunities for using hiPSCs as a rich source of NCSCs to study and treat NC-related disorders.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.22 MBAdobe PDFView/Open

Page view(s) 50

checked on Oct 23, 2020

Download(s) 50

checked on Oct 23, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.