Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163625
Title: PIANO: influence maximization meets deep reinforcement learning
Authors: Li, Hui
Xu, Mengting
Bhowmick, Sourav S.
Rayhan, Joty Shafiq
Sun, Changsheng
Cui, Jiangtao
Keywords: Engineering::Computer science and engineering
Issue Date: 2022
Source: Li, H., Xu, M., Bhowmick, S. S., Rayhan, J. S., Sun, C. & Cui, J. (2022). PIANO: influence maximization meets deep reinforcement learning. IEEE Transactions On Computational Social Systems, 1-13. https://dx.doi.org/10.1109/TCSS.2022.3164667
Journal: IEEE Transactions on Computational Social Systems
Abstract: Since its introduction in 2003, the influence maximization (IM) problem has drawn significant research attention in the literature. The aim of IM, which is NP-hard, is to select a set of k users known as seed users who can influence the most individuals in the social network. The state-of-the-art algorithms estimate the expected influence of nodes based on sampled diffusion paths. As the number of required samples has been recently proven to be lower bounded by a particular threshold that presets tradeoff between the accuracy and the efficiency, the result quality of these traditional solutions is hard to be further improved without sacrificing efficiency. In this article, we present an orthogonal and novel paradigm to address the IM problem by leveraging deep reinforcement learning (RL) to estimate the expected influence. In particular, we present a novel framework called deeP reInforcement leArning-based iNfluence maximizatiOn (PIANO) that incorporates network embedding and RL techniques to address this problem. In order to make it practical, we further present PIANO-E and PIANO@⟨angle d⟩, both of which can be applied directly to answer IM without training the model from scratch. Experimental study on real-world networks demonstrates that PIANO achieves the best performance with respect to efficiency and influence spread quality compared to state-of-the-art classical solutions. We also demonstrate that the learned parametric models generalize well across different networks. Besides, we provide a pool of pretrained PIANO models such that any IM task can be addressed by directly applying a model from the pool without training over the targeted network.
URI: https://hdl.handle.net/10356/163625
ISSN: 2329-924X
DOI: 10.1109/TCSS.2022.3164667
Rights: © 2022 IEEE. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Page view(s)

13
Updated on Feb 4, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.