Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTian, Miaoen_US
dc.contributor.authorHui, Haiqingen_US
dc.contributor.authorMa, Taoen_US
dc.contributor.authorZhao, Guanruen_US
dc.contributor.authorZarak, Mahmooden_US
dc.contributor.authorYou, Xiaofeien_US
dc.contributor.authorLi, Wenluen_US
dc.identifier.citationTian, M., Hui, H., Ma, T., Zhao, G., Zarak, M., You, X. & Li, W. (2022). A novel nanofiltration membrane with a sacrificial chlorine-resistant nanofilm: design and characterization of tailored membrane pores and surface charge. Desalination, 538, 115896-.
dc.description.abstractNanofiltration (NF) membranes are important for the resource of the wastewater from the coal chemical industry, brackish water and seawater desalination, and other purification applications to overcome the shortage of fresh water. However, ordinary NF membranes are easily oxidized by the residual chlorine in the influent. Here, we report a phase transition of lysozyme nanofilm for tuning the nanopore and surface charge of commercial NF membranes by a one-step dip-coating method using a buffer solution mixed with lysozyme. The pore size and selectivity of the membrane can be tailored through the coating time. The nanofilm can protect the membrane as a sacrifice layer from the corrosion of sodium hypochlorite solution. X-ray photoelectron spectroscopy (XPS) results confirmed that the nanofilm disappeared after being oxidized by 1000 ppm NaClO for 30 h. Nanofilm can effectively keep the rejection rate of Na2SO4 at ~96 %. Our work proves the potential use of nanofilm as a good post-treatment for regulating membrane pore structure and surface charge. The construction of the sacrificial layer, which has also been proven to be universal for other types of membranes, provides a new idea for the NF membrane to resist sodium hypochlorite oxidation.en_US
dc.rights© 2022 Elsevier B.V. All rights reserved.en_US
dc.subjectEngineering::Environmental engineeringen_US
dc.titleA novel nanofiltration membrane with a sacrificial chlorine-resistant nanofilm: design and characterization of tailored membrane pores and surface chargeen_US
dc.typeJournal Articleen
dc.contributor.researchNanyang Environment and Water Research Instituteen_US
dc.contributor.researchSingapore Membrane Technology Centreen_US
dc.subject.keywordsChlorine Resistanceen_US
dc.description.acknowledgementThe authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant 52100105), Shaan Xi Province (No. 2021JQ-108, No. 2022JQ-080), Fundamental Research Funds for the Central Universities (D5000210544) and Northwestern Polytechnical University, China.en_US
item.fulltextNo Fulltext-
Appears in Collections:NEWRI Journal Articles

Citations 50

Updated on Mar 24, 2023

Web of ScienceTM
Citations 50

Updated on Mar 23, 2023

Page view(s)

Updated on Mar 28, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.