Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163686
Title: Inspection of GFRP composites using capacitive imaging
Authors: Toh, Choon Hong
Keywords: Engineering::Manufacturing::Quality control
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Toh, C. H. (2023). Inspection of GFRP composites using capacitive imaging. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/163686
Project: B446 
Abstract: Various defects, most notably delamination and debonding can form on Glass-Fibre Reinforced Plastics, during manufacturing processes and during a components’ service life, which could severely limit its capabilities. Current widespread methods used to inspect GFRP include Ultrasonic Testing (UT) and Eddy current testing, but they have long processing times, expensive equipment and are limited by some inconveniences, such as requiring a coupling medium for Ultrasound Testing. Hence, a low-cost, high-speed non-destructive testing (NDT) method able to reliably detect and locate the presence of defects on GFRP is required. As such, this Final Year Project (FYP) aims to explore Capacitive Imaging (CI), a low-cost non-destructive inspection technique that utilises an electrical approach based on the capacitance of co-planar electrodes to detect irregularities on a material, and its effectiveness on GFRP. Ultrasound Testing, a well-established NDT method proven to work on GFRP, was compared with the CI result to ascertain its effectiveness. Both NDT methods are applied on various GFRP samples with planted defects. Results have shown that CI is generally unable to detect planted defects on CSM GFRP. Although it roughly locates surface and subsurface defects for unidirectional GFRP and woven GFRP, it is unable to measure the defect size precisely. It has also shown that higher scanning speed could enhance CI’s ability to pinpoint the location of defects on woven samples. This makes CI a good complementary NDT method together with Ultrasound Testing in identifying defects. Future work would involve translating the proof-of-concept into a preliminary prototype using low-cost electronics and explore the possibility of a multiplexed sensor array to reduce scanning time.
URI: https://hdl.handle.net/10356/163686
Schools: School of Mechanical and Aerospace Engineering 
Organisations: Advanced Remanufacturing and Technology Centre
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP report final(Toh Choon Hong).pdf
  Restricted Access
3.54 MBAdobe PDFView/Open

Page view(s)

134
Updated on Feb 28, 2024

Download(s)

15
Updated on Feb 28, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.