Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163726
Title: Network dynamics of the nonlinear power-law relaxation of cell cortex
Authors: Li, Shao-Heng
Gao, Huajian
Xu, Guang-Kui
Keywords: Engineering::Mechanical engineering
Issue Date: 2022
Source: Li, S., Gao, H. & Xu, G. (2022). Network dynamics of the nonlinear power-law relaxation of cell cortex. Biophysical Journal, 121(21), 4091-4098. https://dx.doi.org/10.1016/j.bpj.2022.09.035
Project: 002479-00001 
Journal: Biophysical Journal 
Abstract: Living cells are known to exhibit universal power-law rheological behaviors, but their underlying biomechanical principles are still not fully understood. Here, we present a network dynamics picture to decipher the nonlinear power-law relaxation of cortical cytoskeleton. Under step strains, we present a scaling relation between instantaneous differential stiffness and external stress as a result of chain reorientation. Then, during the relaxation, we show how the scaling law theoretically originates from an exponential form of cortical disorder, with the scaling exponent decreased by the imposed strain or crosslinker density in the nonlinear regime. We attribute this exponent variation to the molecular realignment along the stretch direction or the transition of network structure from in-series to in-parallel modes, both solidifying the network toward our one-dimensional theoretical limit. In addition, the rebinding of crosslinkers is found to be crucial for moderating the relaxation speed under small strains. Together with the disorder nature, we demonstrate that the structural effects of networks provide a unified interpretation for the nonlinear power-law relaxation of cell cortex, and may help to understand cell mechanics from the molecular scale.
URI: https://hdl.handle.net/10356/163726
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2022.09.035
Rights: © 2022 Biophysical Society. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Page view(s)

17
Updated on Feb 7, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.