Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163847
Title: Surface settlement modelling using neural networks
Authors: Kori, Prajwal Jagadeesh
Keywords: Engineering::Civil engineering::Geotechnical
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Kori, P. J. (2022). Surface settlement modelling using neural networks. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/163847
Abstract: Singapore is a highly urbanized and densely populated city with high-rise buildings and complex infrastructure above and below the ground. Hence, it is imperative that the ground movements induced from tunnelling operations are anticipated and controlled prior to their occurrence, which might otherwise produce undesirable consequences that can be catastrophic in nature and this may even extend to human lives. This alludes to critical planning of tunnelling activities that should be accounted for into the overall construction process to prevent loss of lives and property destruction. Previously, engineers and research scientists relied on empirical methods and analytical methods to predict ground settlement, but in essence they have their own limitations and do not accurately predict the settlement values, especially given the growing complexity of the underlying transportation infrastructure, adjacent building foundations that have varying ages and underground utilities. This study investigates the use of artificial neural networks (ANN) and explores different dimensionality reduction techniques to achieve improvements in predicting settlement values. The dataset was collected across three tunnelling projects in Singapore and encompasses a plethora of geological and TBM operational parameters. The datasets were fed to ANN models with different hyperparameter configurations. The performance measures of each model fed with different dataset obtained from different dimensionality reduction techniques were evaluated and the model yielding the best results was chosen.
URI: https://hdl.handle.net/10356/163847
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
GE-28AB FYP Final Report Updated.pdf
  Restricted Access
10.68 MBAdobe PDFView/Open

Page view(s)

26
Updated on Feb 6, 2023

Download(s)

3
Updated on Feb 6, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.