Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/163931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Xiyaoen_US
dc.contributor.authorLi, Laen_US
dc.contributor.authorChen, Shuaien_US
dc.contributor.authorXu, Haoen_US
dc.contributor.authorLi, Junzhien_US
dc.contributor.authorShulga, Valeriien_US
dc.contributor.authorHan, Weien_US
dc.date.accessioned2022-12-22T05:34:59Z-
dc.date.available2022-12-22T05:34:59Z-
dc.date.issued2021-
dc.identifier.citationFu, X., Li, L., Chen, S., Xu, H., Li, J., Shulga, V. & Han, W. (2021). Knitted Ti₃C₂Tₓ MXene based fiber strain sensor for human-computer interaction. Journal of Colloid and Interface Science, 604, 643-649. https://dx.doi.org/10.1016/j.jcis.2021.07.025en_US
dc.identifier.issn0021-9797en_US
dc.identifier.urihttps://hdl.handle.net/10356/163931-
dc.description.abstractFiber-based stretchable electronics with feasibility of weaving into textiles and advantages of light-weight, long-term stability, conformability and easy integration are highly desirable for wearable electronics to realize personalized medicine, artificial intelligence and human health monitoring. Herein, a fiber strain sensor is developed based on the Ti3C2Tx MXene wrapped by poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) polymer nanofibers prepared via electrostatic spinning. Owing to the good conductivity of Ti3C2Tx and unique 3D reticular structure with wave shape, the resistance of Ti3C2Tx@P(VDF-TrFE) polymer nanofibers changes under external force, thus providing remarkable strain inducted sensing performance. As-fabricated sensor exhibits high gauge factor (GF) of 108.8 in range of 45-66% strain, rapid response of 19 ms, and outstanding durability over 1600 stretching/releasing cycles. The strain sensor is able to monitor vigorous human motions (finger or wrist bending) and subtle physiological signals (blinking, pulse or voice recognition) in real-time. Moreover, a data glove is designed to connect different gestures and expressions to form an intelligent gesture-expression control system, further confirming the practicability of our Ti3C2Tx@P(VDF-TrFE) strain sensors in multifunctional wearable electronic devices.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Colloid and Interface Scienceen_US
dc.rights© 2021 Elsevier Inc. All rights reserved.en_US
dc.subjectEngineering::Materialsen_US
dc.titleKnitted Ti₃C₂Tₓ MXene based fiber strain sensor for human-computer interactionen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1016/j.jcis.2021.07.025-
dc.identifier.pmid34280762-
dc.identifier.scopus2-s2.0-85110724245-
dc.identifier.volume604en_US
dc.identifier.spage643en_US
dc.identifier.epage649en_US
dc.subject.keywordsStrain Sensoren_US
dc.subject.keywordsFiber Electronicsen_US
dc.description.acknowledgementThe authors sincerely acknowledge financial support from the National Natural Science Foundation of China (NSFC Grant Nos. 21571080, 51502110).en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 20

19
Updated on Mar 24, 2023

Web of ScienceTM
Citations 20

18
Updated on Mar 25, 2023

Page view(s)

97
Updated on Mar 29, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.