Please use this identifier to cite or link to this item:
Title: Full-waveform inversion of high-frequency teleseismic body waves based on multiple plane-wave incidence: methods and practical applications
Authors: Wang, Kai
Wang, Yi
Song, Xin
Tong, Ping
Liu, Qinya
Yang, Yingjie
Keywords: Science::Geology
Issue Date: 2022
Source: Wang, K., Wang, Y., Song, X., Tong, P., Liu, Q. & Yang, Y. (2022). Full-waveform inversion of high-frequency teleseismic body waves based on multiple plane-wave incidence: methods and practical applications. Bulletin of the Seismological Society of America, 112(1), 118-132.
Project: 04MNP000559C230
Journal: Bulletin of the Seismological Society of America
Abstract: Teleseismic full-waveform inversion has recently been applied to image subwavelength-scale lithospheric structures (typically a few tens of kilometers) by utilizing hybrid methods in which an efficient solver for the 1D background model is coupled with a full numerical solver for a small 3D target region. Among these hybrid methods, the coupling of the fre-quency–wavenumber technique with the spectral element method is one of the most com-putationally efficient ones. However, it is normally based on a single plane-wave incidence, and thus cannot synthesize secondary global phases generated at interfaces outside the target area. To remedy the situation, we propose to use a multiple plane-wave injection method to include secondary global phases in the hybrid modeling. We investigate the performance of the teleseismic full-waveform inversion based on single and multiple plane-wave incidence through an application in the western Pyrenees and compare it with previously published images and the inversion based on a global hybrid method. In addi-tion, we also test the influence of Earth’s spherical curvature on the tomographic results. Our results demonstrate that the teleseismic full-waveform inversion based on a single plane-wave incidence can reveal complex lithospheric structures similar to those imaged using a global hybrid method and is reliable for practical tomography for small regions with an aperture of a few hundred kilometers. However, neglecting the Earth’s spherical curvature and secondary phases leads to errors on the recovered amplitudes of velocity anomalies (e.g., about 2.8% difference for density and VS, and 4.2% for VP on average). These errors can be reduced by adopting a spherical mesh and injecting multiple plane waves in the frequency–wavenumber-based hybrid method. The proposed plane-wave teleseismic full-waveform inversion is promising for mapping subwavelength-scale seismic structures using high-frequency teleseismic body waves ( > 1 Hz) including coda waves recorded at large N seismic arrays.
ISSN: 0037-1106
DOI: 10.1785/0120210094
Schools: School of Physical and Mathematical Sciences 
Asian School of the Environment 
Rights: © 2022 Seismological Society of America. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:ASE Journal Articles
SPMS Journal Articles

Citations 50

Updated on Apr 18, 2024

Web of ScienceTM
Citations 50

Updated on Oct 26, 2023

Page view(s)

Updated on Apr 18, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.