Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/164175
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhary, Richaen_US
dc.contributor.authorChaudhary, Varunen_US
dc.contributor.authorRamanujan, Raju V.en_US
dc.contributor.authorSteele, Terry W. J.en_US
dc.date.accessioned2023-01-09T01:41:11Z-
dc.date.available2023-01-09T01:41:11Z-
dc.date.issued2022-
dc.identifier.citationChaudhary, R., Chaudhary, V., Ramanujan, R. V. & Steele, T. W. J. (2022). AC magnetorheology of polymer magnetic composites. Materials Advances, 3(18), 7116-7124. https://dx.doi.org/10.1039/d2ma00473aen_US
dc.identifier.issn2633-5409en_US
dc.identifier.urihttps://hdl.handle.net/10356/164175-
dc.description.abstractDetermination of the rheological behavior of polymer magnetic composites is required for real-time industrial processing and incorporating advance material feedback loops. However, the rheological behavior in the presence of an alternating magnetic field (AMF) has many technical challenges with respect to unwanted induction of nearby electronics and testing probes. For the first time, a custom-made magneto-rheometer is designed to quantitate viscoelastic adhesives susceptible to alternating magnetic fields (AMFs). The dynamic viscosity, complex modulus, and temperature profiles are correlated with the cumulative AMF exposure, thermal conductivity, particle loading and nature of non-ferrous support materials. Magnetoadhesive composites reached the gelation point in less than 1 min after AMF exposure. Epoxy resins exceeded 11 MPa shear modulus at strains of <10% under an AMF of 140 Oe. The crosslinking kinetics are strongly correlated with Curie nanoparticle loading, substrate thermal conductivity, and initiation temperature. For the first time, optimum process parameters for magnetic field processing of polymer magnetic composites are determined using a high-throughput approach.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.language.isoenen_US
dc.relationIRG17283008en_US
dc.relation.ispartofMaterials Advancesen_US
dc.rights© 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.en_US
dc.subjectEngineering::Materialsen_US
dc.titleAC magnetorheology of polymer magnetic compositesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.identifier.doi10.1039/d2ma00473a-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85135512966-
dc.identifier.issue18en_US
dc.identifier.volume3en_US
dc.identifier.spage7116en_US
dc.identifier.epage7124en_US
dc.subject.keywordsAC Magnetorheologyen_US
dc.subject.keywordsPolymer Magnetic Compositesen_US
dc.description.acknowledgementThis work was financially supported by the Agency for Science, Technology and Research (A*Star) IRG17283008 ‘‘Microprocessor-based methods of composite curing’’.en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:MSE Journal Articles
Files in This Item:
File Description SizeFormat 
d2ma00473a.pdf4.4 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

2
Updated on Mar 21, 2024

Web of ScienceTM
Citations 50

1
Updated on Oct 22, 2023

Page view(s)

93
Updated on Mar 28, 2024

Download(s)

20
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.